A new proof that 83 is prime

D. J. Bernstein

Thanks to:

University of Illinois at Chicago NSF DMS–0140542 Alfred P. Sloan Foundation Math Sciences Research Institute University of California at Berkeley Theorem: 83 is prime.

Proof: Define R as the ring $(\mathbb{Z}/83)[i]/(i^2+1)$.

Map R onto a field k.

(There exists a prime pdividing 83, since 83 > 1. There exists an irreducible $\varphi \in (\mathbb{Z}/p)[i]$ dividing $i^2 + 1$. Define $k = (\mathbb{Z}/p)[i]/\varphi$.)

Use calculator to see that $83^2 - 1 = 14 \cdot 492$ in **Z** and $(2+i)^{492} = 34 + 16i$ in R. (Square repeatedly: $(2+i)^2 = 3+4i$ in R; $(2+i)^3 = 2+11i$ in R; $(2+i)^6 = -34 - 39i$ in R: . . ., $(2+i)^{123} = 16 + 18i$ in R; $(2+i)^{246} = 15 - 5i$ in R; $(2+i)^{492} = 34 + 16i$ in R.)

Use calculator to see that

$$(34 + 16i)^2 - 1 = -14 + 9i$$

is in R^* , reciprocal $41 - 27i$;
 $(34 + 16i)^7 - 1 = -2$
is in R^* , reciprocal 41;
and $(34 + 16i)^{14} = 1$ in R .
Thus $(2 + i)^{\#R-1} = 1$ in R ;

 $(2+i)^{(\#R-1)/2} - 1$ and $(2+i)^{(\#R-1)/7} - 1$ are in R^* ; also, (2+i) - 1 is in R^* .

Define ζ as the image in k of $(2+i)^{(\# R-1)/14}$. Then $\zeta^2 \neq 1, \ \zeta^7 \neq 1, \ \zeta^{14} = 1,$ so ζ has order 14, and 14 divides #k-1. $(2+i)^{\#k-1} = 1$ in k so $(2+i)^{(\#k-1)/14} = \zeta^{\ell}$ in k for some $\ell \in \mathbf{Z}$.

Use calculator to see that $(x-1)^{83^2} = (2+i)^{(83^2-1)/14}x - 1$ in the ring $R[x]/(x^{14}-(2+i)).$

(Square repeatedly: $(x-1)^2 = x^2 - 2x + 1,$ $(x-1)^3 = x^3 - 3x^2 + 3x - 1,$

. . .,

 $(x-1)^{1722} = (-10+40i)x^{13} + \cdots,$ $(x-1)^{3444} = (-39-24i)x^{13} + \cdots,$ $(x-1)^{6888} = (-17+33i)x^{13} + \cdots,$ $(x-1)^{6889} = (34+16i)x-1.$

Define $S = k[x]/(x^{14} - (2 + i))$. $(x-1)^{\#R} = \zeta x - 1$ in S.

Substitute $\zeta^m x$ for x: $(\zeta^m x - 1)^{\#R} = \zeta^{m+1} x - 1$ in $k[x]/((\zeta^m x)^{14} - (2 + i)) = S$. $(x - 1)^{\#R^m} = \zeta^m x - 1$ in S. $(x - 1)^{\#R^m \#k^j} = \zeta^{m+j\ell} x - 1$ in S. Define *C* as the set of $(\alpha, \beta) \in \mathbf{R} \times \mathbf{R}$ such that $|\alpha \lg(\#R/\#k)|, |\beta \lg \#k|,$ and $|\alpha \lg(\#R/\#k) + \beta \lg \#k|$ are $\leq \sqrt{14/3} \lg \#R.$

If #k = #R then can skip to end of proof, so assume #k < #R.

C is a closed convex symmetric set of area $3(14/3)\frac{(\lg \# R)^2}{(\lg \# k) \lg(\# R/\# k)}$, which is at least $4 \cdot 14$.

By Minkowski's theorem, C has a nonzero point (α, β) in the determinant-14 lattice $\{(\alpha, \beta) \in \mathbf{Z} \times \mathbf{Z} :$ $\alpha + (\beta - \alpha)\ell \in 14\mathbf{Z}\}.$

Assume wlog that $\alpha \geq 0$.

If $eta \geq 0$, define $u = (\# R / \# k)^{lpha} \# k^{eta}$ and v = 1.

Then u and v are positive integers; u and v are $\leq \# R^{\sqrt{14/3}}$; and $(x-1)^{u\#k^{\alpha}} = (x-1)^{\# R^{\alpha} \# k^{\beta}}$ $= \zeta^{\alpha+\beta\ell}x - 1 = \zeta^{\alpha\ell}x - 1$ $= (x-1)^{\#k^{\alpha}} = (x-1)^{v\#k^{\alpha}}$ in S.

Similar results if eta < 0: define $u = (\# R / \# k)^lpha$ and $v = \# k^{-eta}$.

x-1 is in S^* : $x^{14} - (2+i) \mod x - 1$ is 1 - (2 + i), which is in k^* . $(x-1)^{\#k^{14}} = x-1$ in S so order of x-1 is coprime to #k. $(x-1)^{u\#k^{lpha}-v\#k^{lpha}}=1$ in S^* so $(x-1)^{u-v} = 1$ in S^* . Note that $|u - v| < (83^2)\sqrt{14/3}$. Use calculator to see that $(83^2)\sqrt{14/3} < (83^2)\sqrt{169/36}$ $= 83^{13/3} < 210000000.$

If $a_0, a_1, \ldots, a_{13} \in {\sf Z}$ then $(x-1)^{a_0} \cdots (\zeta^{13}x-1)^{a_{13}}$ is a power of x-1 in S^* .

Consider vectors $(a_0, a_1, ..., a_{13})$ with $\#\{m : a_m < 0\} = 4$, $\sum_m -a_m[a_m < 0] \le 6$, $\sum_m a_m[a_m \ge 0] \le 7$.

Number of such vectors a is $\binom{14}{4}\binom{6}{4}\binom{17}{7}$; use calculator to see that $\binom{14}{4}\binom{6}{4}\binom{17}{7} = 292011720$.

Say two such vectors a, b have $\prod_{m} (\zeta^{m} x - 1)^{a_{m}} = \prod_{m} (\zeta^{m} x - 1)^{b_{m}}$ in S^{*} .

Then A = B in S where $A = \prod (\zeta^m x - 1)^{a_m [a_m \ge 0] - b_m [b_m < 0]},$ $B = \prod (\zeta^m x - 1)^{b_m [b_m \ge 0] - a_m [a_m < 0]}.$

deg A, deg B are at most 6+7 < 14so A = B in k[x]. $x - 1, \zeta x - 1, \ldots, \zeta^{13}x - 1$ are coprime in k[x] so a = b. So there are ≥ 292011720 powers of x - 1 in S^* .

Thus u = v, i.e., $\#R^{\alpha} = \#k^{\alpha-\beta}$. If $\alpha = 0$ then $\beta = 0$, contradiction. Thus 83 is a power of a prime. Use calculator to see that 83 is not a square, cube, etc.

Thus 83 is prime.

Q.E.D.

This is a really stupid way to prove that 83 is prime.

But it scales really well!

Any prime n has a similar proof of primality. Verify in time $(\lg n)^{4+o(1)}$. Find in expected time $(\lg n)^{2+o(1)}$; GRH guarantees time $(\lg n)^{2+o(1)}$.

Proving primality of n = 31415926535897932384626433832795028841:

Use $R = \mathbf{Z}/n$. Check that

- 840 divides n − 1;
- $17^{(n-1)/840}$ is a primitive

840th root of 1 in R;

- $(x-1)^n = 17^{(n-1)/840}x 1$ in $R[x]/(x^{840} - 17)$; and
- $\binom{840}{246}\binom{419}{246}\binom{1014}{420} \ge n^{\lceil\sqrt{840/3}\rceil}$.

Basic ideas introduced August 2002 by Agrawal-Kayal-Saxena.

Kummer and twists introduced November 2002 by Berrizbeitia: verify in time $(\lg n)^{4+o(1)}$ if $n \pm 1$ has large power of 2.

Generalized to any *n* January 2003 by Bernstein, analogously to 1985 Lenstra. Constant-factor speedups: parameter choice by Bernstein; negative powers by Voloch, with optimization by Vaaler; #R/#k by Lenstra; Minkowski by Lenstra.

Can we achieve $(\lg n)^{3+o(1)}$? Want to prove that there are many more powers of x-1 in S^* .