The Poly1305-AES message-authentication code

D. J. Bernstein

Thanks to:

University of Illinois at Chicago NSF CCR–9983950 Alfred P. Sloan Foundation

The AES function

("Rijndael" 1998 Daemen Rijmen; 2001 standardized as "AES")

Given 16-byte sequence nand 16-byte sequence k, AES produces 16-byte sequence $AES_k(n)$.

Uses table lookup and \bigoplus (xor): e0 = tab[k[13]] \bigoplus 1 e1 = tab[k[0] \bigoplus n[0]] \bigoplus k[0] \bigoplus e0 etc.

 $AES_k(n) = (e784, ..., e799).$

Unpredictability

Consider two oracles.

One oracle knows a uniform random 16-byte sequence k. Given a 16-byte sequence n, this oracle returns $AES_k(n)$.

The other oracle knows a uniform random permutation fof the set of 16-byte sequences. Given n, this oracle returns f(n).

Design goal of AES: These oracles are indistinguishable.

Define δ as attacker's chance of distinguishing AES_k from uniform random permutation: i.e., distance between Pr[attacker says yes given f] and Pr[attacker says yes given AES_k]. We *believe* that $\delta \leq 2^{-40}$

even for an attacker using

100 years of CPU time

on all the world's computers.

Can't prove it, but many experts have failed to disprove it.

The Poly1305-AES function

Given byte sequence m, 16-byte sequence n, 16-byte sequence k, 16-byte sequence rwith certain bits cleared, Poly1305-AES produces 16-byte sequence Poly1305 $_r(m, AES_k(n))$.

Uses polynomial evaluation modulo the prime $2^{130} - 5$.

```
unsigned int j;
mpz_class rbar = 0;
for (j = 0; j < 16; ++j)
  rbar += ((mpz_class) r[j]) << (8 * j);</pre>
mpz_class h = 0;
mpz_class p = (((mpz_class) 1) << 130) - 5;</pre>
while (mlen > 0) {
  mpz_class c = 0;
  for (j = 0;(j < 16) && (j < mlen);++j)</pre>
    c += ((mpz_class) m[j]) << (8 * j);</pre>
  c += ((mpz_class) 1) << (8 * j);</pre>
  m += j; mlen -= j;
  h = ((h + c) * rbar) \% p;
}
unsigned char aeskn[16];
aes(aeskn,k,n);
for (j = 0; j < 16; ++j)
  h += ((mpz_class) aeskn[j]) << (8 * j);</pre>
for (j = 0;j < 16;++j) {
  mpz_class c = h \% 256;
  h >>= 8;
 out[j] = c.get_ui();
}
```

Poly1305-AES authenticators

Sender, receiver share secret uniform random k, r.

Sender attaches authenticator $a = \text{Poly1305}_r(m, \text{AES}_k(n))$ to message m with nonce n.

(The usual nonce requirement: never use the same nonce for two different messages.)

Receiver rejects n', m', a'if $a' \neq \text{Poly1305}_r(m', \text{AES}_k(n'))$.

Poly1305-AES security guarantee

Attacker adaptively chooses $C \le 2^{64}$ messages, sees their authenticators, attempts D forgeries; all messages $\le L$ bytes.

Then Pr[all forgeries rejected] $\geq 1 - \delta - 14D \left\lceil L/16 \right\rceil / 2^{106}.$

Example: Say $\delta \leq 2^{-40}$; L = 1536; see 2^{64} authenticators; attempt 2^{64} forgeries. Then Pr[all rejected] ≥ 0.99999999998 .

Alternatives to AES

Can replace AES_k with any F_k that is conjecturally unpredictable.

Example: $F_k(n) = MD5(k, n)$. Somewhat slower than AES.

"Hasn't MD5 been broken?" Distinct (k, n), (k', n') are known with MD5(k, n) = MD5(k', n'). (2004 Wang)

Still not obvious how to predict $n \mapsto MD5(k, n)$ for secret k. We know AES collisions too!

<u>Alternatives to +</u>

 $\mathsf{Poly1305}_r(m, \mathsf{AES}_k(n))$ equals $\mathsf{Poly1305}_r(m, 0) + \mathsf{AES}_k(n)$ where + is addition modulo 2^{128} .

Use Poly1305_r(m, 0) \oplus AES_k(n)? No! Eliminates security guarantee.

Use $AES_k(Poly1305_r(m, 0))$? Has a guarantee, but bad for large C: roughly $8C(C + D) \lceil L/16 \rceil / 2^{106}$.

Use $MD5(k, n, Poly1305_r(m, 0))$? That's fine if MD5 is ok.

Alternatives to Poly1305

The crucial property of Poly1305_r: If m, m' are distinct messages and Δ is a 16-byte sequence then $Pr[Poly1305_r(m, 0) =$ $Poly1305_r(m', 0) + \Delta]$ is very small: $\leq 8 \lceil L/16 \rceil / 2^{106}$. "Small differential probabilities."

In particular, for $\Delta = 0$: If m, m' are distinct messages then $Pr[Poly1305_r(m, 0) =$ $Poly1305_r(m', 0)]$ is very small. "Small collision probabilities." Easy to build functions that satisfy these properties.

Embed messages and outputs into polynomial ring $Z[x_1, x_2, x_3, ...]$.

Use $m \mapsto m \mod r$ where r is a random prime ideal.

Small differential probability means that $m - m' - \Delta$ is divisible by very few r's when $m \neq m'$.

(Addition of Δ is actually mod 2¹²⁸; be careful.)

Example: (1981 Karp Rabin)

View messages m as integers, specifically multiples of 2^{128} . Outputs: $\{0, 1, ..., 2^{128} - 1\}$.

Reduce m modulo a uniform random prime number rbetween 2^{120} and 2^{128} . (Problem: generating r is slow.) Low differential probability:

if $m \neq m'$ then $m - m' - \Delta \neq 0$ so $m - m' - \Delta$ is divisible by very few prime numbers. Variant that works with \oplus :

View messages m as polynomials $m_{128}x^{128} + m_{129}x^{129} + \cdots$ with each m_i in $\{0, 1\}$.

Outputs: $o_0 + o_1 x + \cdots + o_{127} x^{127}$ with each o_i in {0, 1}.

Reduce m modulo 2, r where r is a uniform random irreducible degree-128 polynomial over Z/2. (Problem: division by r is slow; no polynomial-multiplication circuit in a typical computer.)

Example: (1974 Gilbert MacWilliams Sloane)

Choose prime number $p \approx 2^{128}$. View messages m as linear polynomials $m_1x_1 + m_2x_2 + m_3x_3$ with $m_1, m_2, m_3 \in \{0, \dots, p-1\}$. Outputs: $\{0, \dots, p-1\}$.

Reduce m modulo $p, x_1 - r_1, x_2 - r_2, x_3 - r_3$ to $m_1r_1 + m_2r_2 + m_3r_3 \mod p$. (Problem: long m needs long r.) Example: (1993 den Boer; independently 1994 Taylor; independently 1994 Bierbrauer Johansson Kabatianskii Smeets)

Choose prime number $p \approx 2^{128}$. View messages m as polynomials $m_1x + m_2x^2 + m_3x^3 + \cdots$ with $m_1, m_2, m_3, \ldots \in \{0, 1, \ldots, p - 1\}.$ Outputs: $\{0, 1, \ldots, p - 1\}.$

Reduce m modulo p, x - rwhere r is a uniform random element of $\{0, 1, \ldots, p - 1\}$; i.e., compute $m_1r + m_2r^2 + \cdots \mod p$.

"hash127": 32-bit m_i 's, $p = 2^{127} - 1$. (1999 Bernstein) "PolyR": 64-bit m_i 's, $p = 2^{64} - 59$; re-encode m_i 's between p and $2^{64} - 1$; run twice to achieve reasonable security. (2000 Krovetz Rogaway) "Poly1305": 128-bit m_i 's, $p = 2^{130} - 5$. (2002 Bernstein, fully developed in 2004–2005) "CWC": 96-bit m_i 's, $p = 2^{127} - 1$. (2003 Kohno Viega Whiting)

Often people use functions where the differential probabilities are merely *conjectured* to be small.

Example: ("cipher block chaining") If AES_r is unpredictable then $m_1, m_2, m_3 \mapsto$ AES_r(AES_r(AES_r $(m_1) \oplus m_2) \oplus m_3$) has small differential probabilities.

(Much slower than Poly1305.)

Example: (1970 Zobrist, adapted) If AES_r is unpredictable then $m_1, m_2, m_3 \mapsto$ AES_r(1, m_1) \oplus AES_r(2, m_2) \oplus AES_r(3, m_3) has small differential probabilities. (Even slower.)

Example: $m \mapsto MD5(r, m)$ is conjectured to have small collision probabilities.

(Faster than AES, but not as fast as Poly1305.)

How to build your own MAC

1. Choose a combination method: h(m) + f(n) or $h(m) \oplus f(n)$ or f(h(m))—worse security or f(n, h(m))—bigger f input. 2. Choose a random function h where the appropriate probability $(+-differential or \oplus -differential$ or collision or collision) is small: e.g., Poly1305_r.

3. Choose a random function f that seems unpredictable:

e.g., AES_k .

4. Optional complication: Generate k, r from a shorter key; e.g., $k = AES_s(0), r = AES_s(1)$; e.g., $k = MD5(s), r = MD5(s \oplus 1)$; many more possibilities.

- 5. Choose a Googleable name for your MAC.
- 6. Put it all together.
- 7. Publish!

Example:

- 1. Combination: f(h(m)).
- 2. Low collision probability: $AES_r(AES_r(m_1) \oplus m_2).$
- 3. Unpredictable: AES_k .
- 4. Optional complication: No.
- 5. Name: "EMAC." (Whoops.)
- 6. $\mathsf{EMAC}_{k,r}(m_1, m_2) =$ $\mathsf{AES}_k(\mathsf{AES}_r(\mathsf{AES}_r(m_1) \oplus m_2)).$
- 7. (2000 Petrank Rackoff)

Example: "NMAC-MD5" is MD5(k, MD5(r, m)).

"HMAC-MD5" is NMAC-MD5 plus the optional complication.

(1996 Bellare Canetti Krawczyk, claiming novelty of the entire structure)

Stronger: MD5(k, n, MD5(r, m)). Stronger and faster: $MD5(k, n, Poly1305_r(m, 0))$. Wow, I've just invented two new MACs! Time to publish! "MMH: software message authentication in the Gbit/second rates" (1997 Halevi Krawczyk)

Gilbert-MacWilliams-Sloane (incorrectly credited to Carter and Wegman), slightly tweaked.

1.5 Pentium Pro cycles/byte

for a 4-byte authenticator.
6 Pentium Pro cycles/byte
for reasonable security.
Not as fast as MD5.

Polynomial evaluation mod 2¹²⁷ – 1 faster than MD5 on Pentium, UltraSPARC, etc. (1999 Bernstein)

... using a big precomputed table of powers of *r*. MMH also uses large table.

Problem: What happens in applications that handle many keys simultaneously? Tables don't fit into cache, and take a long time to load! Independently: "UMAC-MMX-60, 0.98 Pentium II cycles/byte" (1999 Black Halevi Krawczyk Krovetz Rogaway, using a Winograd trick without credit)

... for an 8-byte authenticator.

... plus many cycles per message.

... and much slower on PowerPC etc. (Newest UMAC benchmark page: "All speeds were measured on a Pentium 4.")

... and again using large tables.

Poly1305: *consistent* high speed. Fast on a wide variety of CPUs.

No precomputation. Still fast when handling many keys. ("High key agility.")

No constraints on message length, message alignment, etc.

Fast public-domain software now available: cr.yp.to/mac.html.

CPU cycles for *l*-byte message with all data aligned in L1 cache:

l	16	128	1024
Athlon	634	979	3767
Pentium III	746	1247	5361
Pentium M	726	1161	4611
PowerPC 7410	896	1728	8464
PowerPC Sstar	910	1459	5905
UltraSPARC II	816	1288	5118
UltraSPARC III	854	1383	5601

Comprehensive speed tables: cr.yp.to/mac/speed.html Some important speed tips:

- Represent large integers

 as sums of floating-point numbers
 (1968 Veltkamp, 1971 Dekker)
 in pre-specified ranges
 (1999 Bernstein).
- Schedule instructions manually.
 C compiler can't figure out, e.g., which additions associate.
- Allocate registers manually.
 C compiler spills values for all sorts of silly reasons.
 200× faster than easy code.