
The Poly1305-AES

message-authentication code

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF CCR–9983950

Alfred P. Sloan Foundation

The Poly1305-AES function

Given byte sequence ,

16-byte sequence � ,

16-byte sequence ,

16-byte sequence �

with certain bits cleared,

Poly1305-AES produces

16-byte sequence

Poly1305 � (� AES � (�)).

Very simple definition

using polynomial evaluation

modulo the prime 2130 � 5.

Poly1305-AES authenticators

Sender, receiver share

secret uniform random � � .

Sender attaches authenticator
� = Poly1305 � (� AES � (�))

to message with nonce � .

(The usual nonce requirement:

never use the same nonce

for two different messages.)

Receiver rejects � � � � � � �

if � � = Poly1305 � (� � AES � (� �)).

Poly1305-AES security guarantee

Attacker adaptively

chooses 264 messages,

sees their authenticators,

attempts forgeries;

all messages
�

bytes.

Define as attacker’s

chance of breaking AES, i.e.,

distinguishing AES � from

uniform random permutation

using + queries.

Then Pr[all forgeries rejected]

1 � � 14 � �
16 � 2106.

Example: Say
�

= 1536; 2 �
40;

see 264 authenticators;

attempt 264 forgeries. Then

Pr[all rejected] 0 � 999999999998.

For comparison, that much effort

easily breaks many other

16-byte MACs: CBC-AES,

HMAC-MD5, DMAC-AES, etc.

Those MACs have guarantees too!

How can they possibly be broken?

Answer: Look at the numbers.

e.g. “8
� 2 2128” is not small.

Do nonces require “additional

message expansion overhead”? No!

Consider TCP connection

transmitting (e.g.) 264 bytes
�

0 � �
1 � � � � � �

12345678901 � � � � .

Message (� � � � �
+1 � � � � � � �) has

nonce (� �) known to both sides.

(TCP sequence number is

bottom 32 bits of � ,
but both sides know top bits too.)

Using this nonce for cryptography

does not take any extra bandwidth.

Poly1305-AES speed

Fast public-domain software now

available: cr.yp.to/mac.html.

CPU cycles for -byte message

with all data aligned in L1 cache:

16 128 1024
Athlon 712 1055 3843

Pentium III 746 1247 5361
PowerPC Sstar 910 1459 5905
UltraSPARC III 854 1383 5601

Bottom line: Faster than MD5.

Much faster than CBC-AES etc.

Unaligned messages

Some applications can easily

guarantee alignment; some can’t.

CPU cycles for -byte message

with all data unaligned:

43 127 1025
Athlon 890 1152 4060

Pentium III 970 1383 5316
PowerPC Sstar 1159 1560 6083
UltraSPARC III 1075 1444 5742

Many more situations covered in

comprehensive speed tables:

cr.yp.to/mac/speed.html

The art of benchmarking

Many deceptive timings in

the cryptographic literature:
� Bait-and-switch timings.
� Guesses reported as timings.
� My-favorite-CPU timings.
� Long-message timings.
� Timings after precomputation.

Consequence: In the real world,

these functions are often

much slower than advertised.

In contrast, Poly1305-AES

provides consistent high speed.

Bait-and-switch timings

Deception strategy: Create two

versions of your function, a small

Fun-Breakable and a big Fun-Slow.

Report timings for Fun-Breakable.

Example in literature:

“More than 1 Gbit/sec

on a 200 MHz Pentium Pro”

� � � if you switch to a

silly 4-byte authenticator.

The honest alternative:

Focus on one function.

Poly1305-AES is strong and fast.

Guesses reported as timings

Deception strategy: Measure

only part of the computation.

Estimate the other parts.

Example in literature:

“achieves 2 � 2 clock cycles per byte”

� � � if the unimplemented parts

are as fast as various estimates.

The honest alternative:

Measure exactly the function call

verify(a,kr,n,m,mlen)

that applications will use.

My-favorite-CPU timings

Deception strategy: Choose CPU

where function is very fast.

Ignore all other CPUs.

Example in literature: “All speeds

were measured on a Pentium 4”

� � � because other chips take

many more cycles per byte

for this particular computation.

The honest alternative:

Measure every CPU you can find.

If reader doesn’t care about

a particular chip, he can ignore it.

Long-message timings

Deception strategy: Report time

only for long messages.

Ignore per-message overhead.

Ignore applications that

handle short messages.

Example in literature:

“2 cycles per byte”

� � � plus 2000 cycles per message.

The honest alternative:

Report times for � -byte messages

for each � 0 � 1 � 2 � � � � � 8192 .

Timings after precomputation

Deception strategy: Report

time to compute authenticator

after a big key-dependent table

has been precomputed

and loaded into L1 cache.

Ignore applications that

handle many simultaneous keys.

I’m guilty of this! In April 1999,

I broke the MD5 speed barrier,

but only by ignoring the cost of

handling big key-dependent tables.

Many newer functions: same issue.

The honest alternative:

Measure precomputation time;

measure time to load inputs

that weren’t already in cache.

My Poly1305-AES timings

include AES key expansion and

all necessary � computations.

Cache effects: see speed.html.

Poly1305-AES offers much higher

key agility than hash127-AES etc.

Crucial detail: 2130 � 5

allows 128-bit coefficients.

