The Poly1305-AES

message-authentication code
D. J. Bernstein

Thanks to:

University of lllinois at Chicago
NSF CCR-9983950

Alfred P. Sloan Foundation



The Poly1305-AES function

Given byte sequence m,
16-byte sequence n,

16-byte sequence k,

16-byte sequence 7

with certain bits cleared,
Poly1305-AES produces
16-byte sequence

Poly1305,.(m, AES.(n)).

Very simple definition
using polynomial evaluation
modulo the prime 2130 — 5



Poly1305-AES authenticators

Sender, receiver share
secret uniform random k, 7.

Sender attaches authenticator
a = Poly1305,.(m, AES,(n))
to message m with nonce n.

(The usual nonce requirement:
never use the same nonce
for two different messages.)

Receiver rejects n', m/, o’
if a’ # Poly1305,.(m’, AES,(n')).



Poly1305-AES security guarantee

Attacker adaptively
chooses C < 2%% messages,
sees their authenticators,
attempts D forgeries;

all messages < L bytes.

Define 0 as attacker’s
chance of breaking AES, i.e.,
distinguishing AES, from
uniform random permutation
using C 4+ D queries.

Then Prlall forgeries rejected]
>1—6—14D[L/16] /2100



Example: Say L = 1536; § < 2740;
see 204 authenticators:
attempt 2% forgeries. Then

Prlall rejected] > 0.999999999998.

For comparison, that much effort
easily breaks many other

16-byte MACs: CBC-AES,
HMAC-MD5, DMAC-AES, etc.

Those MACs have guarantees too!
How can they possibly be broken?

Answer: Look at the numbers.
e.g. “8LC?/21%8" is not small.



Do nonces require “additional
message expansion overhead” ? Nol

Consider TCP connection

264

transmitting (e.g.) bytes

To, T1, ..., L12345678901 - - --

Message (z;, Tit1,...,%;) has
nonce (2, 7) known to both sides.
(TCP sequence number is

bottom 32 bits of 1,

but both sides know top bits too.)

Using this nonce for cryptography
does not take any extra bandwidth.



Poly1305-AES speed

Fast public-domain software now

available: cr.yp.to/mac.html.

CPU cycles for £-byte message
with all data aligned in L1 cache:

/4

16

123

1024

Athlon

712

1055

3843

Pentium IlI

746

1247

5361

PowerPC Sstar

910

1459

5905

UltraSPARC 1]

854

1333

5601

Bottom line: Faster than MD?5.
Much faster than CBC-AES etc.




Unaligned messages

Some applications can easily

guarantee alignment; some can't.

CPU cycles for £-byte message

with all data unaligned:

/4

43

127

1025

Athlon

890

1152

4060

Pentium IlI

970

1333

5316

PowerPC Sstar

1159

1560

6083

UltraSPARC 1]

1075

1444

5742

Many more situations covered In

comprehensive speed tables:

cr.yp.to/mac/speed.html




The art of benchmarking

Many deceptive timings in
the cryptographic literature:
e Bait-and-switch timings.

e Guesses reported as timings.

e My-favorite-CPU timings.
e Long-message timings.
e Timings after precomputation.

Consequence: In the real world,
these functions are often
much slower than advertised.

In contrast, Poly1305-AES
provides consistent high speed.



Bait-and-switch timings

Deception strategy: Create two

versions of your function, a small
Fun-Breakable and a big Fun-Slow.
Report timings for Fun-Breakable.

Example in literature:

“More than 1 Gbit/sec

on a 200 MHz Pentium Pro”
. If you switch to a

silly 4-byte authenticator.

The honest alternative:
Focus on one function.
Poly1305-AES is strong and fast.



Guesses reported as timings

Deception strategy: Measure

only part of the computation.
Estimate the other parts.

Example in literature:
“achieves 2.2 clock cycles per byte”

. If the unimplemented parts
are as fast as various estimates.

The honest alternative:

Measure exactly the function call
verify(a,kr,n,m,mlen)

that applications will use.



My-favorite-CPU timings

Deception strategy: Choose CPU
where function is very fast.
lgnore all other CPUs.

Example in literature: “All speeds
were measured on a Pentium 4"
... because other chips take
many more cycles per byte

for this particular computation.

The honest alternative:

Measure every CPU you can find.
If reader doesn’'t care about

a particular chip, he can ignore it.



Long-message timings

Deception strategy: Report time
only for long messages.

lgnore per-message overhead.
lgnore applications that

handle short messages.

Example in literature:
"2 cycles per byte”
. plus 2000 cycles per message.

The honest alternative:
Report times for n-byte messages

for each n € {0,1,2,...,8192}.



Timings after precomputation

Deception strategy: Report
time to compute authenticator
after a big key-dependent table
has been precomputed

and loaded into L1 cache.
lgnore applications that

handle many simultaneous keys.

I'm guilty of this! In April 1999,

| broke the M Db speed barrier,
out only by ignoring the cost of
nandling big key-dependent tables.

Many newer functions: same issue.



The honest alternative:
Measure precomputation time;
measure time to load inputs
that weren't already in cache.

My Poly1305-AES timings
include AES key expansion and

all necessary r computations.
Cache effects: see speed.html.

Poly1305-AES offers much higher
key agility than hash127-AES etc.

Crucial detail: 2130 — 5
allows 128-bit coefficients.



