The power of How fast is sorting?

arallel computation
P P Input: array of n numbers.

D. J. Bernstein Each number In {1, 2, ... ,n2},
Thanks to: represented in binary.
University of lllinois at Chicago Output: array of n numbers,
NSF CCR-9983950 In increasing order,

Alfred P. Sloan Foundation represented in binary;

same multiset as input.

A machine Is given the Input
and computes the output.
How much time does it use?




on

is at Chicago
0
undation

How fast is sorting?

Input: array of m numbers.
Each number In {1, 2, ... ,n2},
represented In binary.

Output: array of n numbers,
In Increasing order,
represented In binary:;

same multiset as input.

A machine Is given the Input
and computes the output.
How much time does it use?

Summarize scalabi

by reporting expor

n°() means logn
100n5/|0g logn + o

n1to(l) means n «
n logn or n(7(log
(Definition: o(1) r
function of n that

e.g. 5n = nltllog!
(log5)/log n conv

At this level of del
how fast is the mz



How fast is sorting?

Input: array of m numbers.
Each number In {1, 2, ... ,n2},
represented In binary.

Output: array of n numbers,
In Increasing order,
represented In binary:;

same multiset as input.

A machine Is given the Input
and computes the output.
How much time does it use?

Summarize scalability
by reporting exponent of n.

n°1) means logn or (logn)? or
100n5/loglogn 1 /1 /m or ...

n1to(1) means n or 5n or
nlogn or n(7(logn)3 +8) or ...

(Definition: o(1) means any

function of n that converges to 0.
e.g. bn = n 1+(log 5)/|ogn;

(log5)/logn converges to 0.)

At this level of detail,
how fast is the machine?



7

numbers.
1,2,...,n%},
ary.

1 numbers,

ry;
nput.

1 the Input
output.
oes it use?

Summarize scalability
by reporting exponent of n.

n°1) means logn or (logn)3? or
100n5/l0glogn 1 /1 /m or .. .

n1to(1) means n or 5n or
nlogn or n(7(logn)3 +8) or ...

(Definition: o(1) means any

function of n that converges to 0.

c.g. hbn = n1‘|‘(|0g 5)/|Og‘n;

(log5)/logn converges to 0.)

At this level of detail,
how fast is the machine?

The answer depen

how the machine \

Possibility 1: The
"1-tape Turing m:
using selection sor

Specifically: The r
a 1-dimensional ar
containing nlto(l.
Each cell stores n'

Input and output :
stored in these cel



Summarize scalability

by reporting exponent of n.

n°1) means logn or (logn)? or

100n5/logloen 1 /1 /m or .. .

n1to(1) means n or 5n or
nlogn or n(7(logn)3 +8) or ...

(Definition: o(1) means any

function of n that converges to 0.

c.g. hbn = n1‘|‘(|0g 5)/|Og‘n;

(log5)/logn converges to 0.)

At this level of detail,
how fast is the machine?

The answer depends on

how the machine works.

Possibility 1: The machine is a
“1-tape Turing machine
using selection sort.”

Specifically: The machine has
a 1-dimensional array
containing n1Tol) “cells.”
Each cell stores n°) bits.

Input and output are
stored in these cells.



lity
ent of n.

or (logn)3 or
l1/nor...

or bn or
n)3 +8)or...

neans any

converges to 0.

5)/Iogn;

erges to 0.)

-ail,
chine?

The answer depends on

how the machine works.

Possibility 1: The machine is a
“1-tape Turing machine
using selection sort.”

Specifically: The machine has
a 1-dimensional array
containing n1Tol) “cells.”
Each cell stores n°) bits.

Input and output are
stored in these cells.

The machine also
“head” moving th
Head contains n°!

Head can see the
Its current array p
perform arithmetic
move to adjacent

Selection sort: He
looks at each arra
picks up the large:

moves It to the en
picks up the secon
etc.



The answer depends on

how the machine works.

Possibility 1: The machine is a
“1-tape Turing machine
using selection sort.”

Specifically: The machine has
a 1-dimensional array
containing n1Tol) “cells.”
Each cell stores n°1) bits.

Input and output are
stored in these cells.

The machine also has a
“head” moving through array.
Head contains n°1) cells.

Head can see the cell at

Its current array position;
perform arithmetic etc.;

move to adjacent array position.

Selection sort: Head
looks at each array position,
picks up the largest number,

moves it to the end of the array,

picks up the second largest,
etc.



ds on
vorks.

machine Is a
chine
t.”

nachine has
ray

- cells.”
(1) bits.

re
|s.

The machine also has a

“head” moving through array.

Head contains n°1) cells.

Head can see the cell at

Its current array position;

perform arithmetic etc.;

move to adjacent array position.

Selection sort: Head

looks at each array position,

picks up the
moves It to t

argest number,

ne end of the array,

picks up the second largest,

etc.

Moving to adjacer
takes n°1) second

Moving a number
takes nlto(l) secc

Same for comparis

Total sorting time
n2+0(1) seconds.

Cost of machine:
n1T°(1) dollars

for n1to(1) cells.

Negligible extra cc



The machine also has a Moving to adjacent array position
“head” moving through array. takes n°1) seconds.

Head contains n°(1) cells. .
Moving a number to end of array

Head can see the cell at takes nlto(1) seconds.
Its current array position; Same for comparisons etc.

perform arithmetic etc.; . .
Total sorting time:

move to adjacent array position.
J y P n2°(1) seconds.

Selection sort: Head .
Cost of machine:

n1to(1) dollars
for n1to(1) cells.

Negligible extra cost for head.

looks at each array position,
picks up the largest number,

moves it to the end of the array,

picks up the second largest,
etc.




has a

rough array.

1) cells.

cell at

osition;

> etc.;

array position.

ad

/ position,

st number,

C

C

of the array,
largest,

Moving to adjacent array position
takes n°1) seconds.

Moving a number to end of array
takes n1t°(1) seconds.
Same for comparisons etc.

Total sorting time:
n2+0(1) seconds.

Cost of machine:
n1T°(1) dollars

for n1to(1) cells.

Negligible extra cost for head.

Possibility 2: The
“2-dimensional RA
using merge sort."

Machine has nlto°

In a 2-dimensional
n0.5+o(1) FOWS. nO

Machine also has .

Merge sort: Head
sorts first |n /2| n
sorts last [n/2]| n
merges the sorted



Moving to adjacent array position
takes n°1) seconds.

Moving a number to end of array
takes n1to(1) seconds.
Same for comparisons etc.

Total sorting time:
n2+0(1) seconds.

Cost of machine:
n1T°(1) dollars

for n1to(1) cells.

Negligible extra cost for head.

Possibility 2: The machine is a
“2-dimensional RAM
using merge sort."

Machine has n1to(1) cells

in a 2-dimensional array:

0.540(1)

n0-5+o(1) rows n columns.

Machine also has a head.

Merge sort: Head recursively
sorts first |n/2| numbers;
sorts last [n /2] numbers;
merges the sorted lists.



t array position
s.

to end of array
nds.
0ons etc.

st for head.

Possibility 2: The machine is a
“2-dimensional RAM
using merge sort."

Machine has nlto(1) cells

in a 2-dimensional array:
n0.5+0(1) FOWS. n0.5+0(1)

Machine also has a head.

Merge sort: Head recursively
sorts first |n/2| numbers;
sorts last [n /2] numbers;
merges the sorted lists.

columns.

Merging requires 7
to “random’ array

Average jump: n’

to adjacent array |
Each move takes 1

Total sorting time
nl-5to(1l) seconds.

Cost of machine:
nlto(l) dollars.



Possibility 2: The machine is a
“2-dimensional RAM
using merge sort."

Machine has nlto(1) cells

in a 2-dimensional array:
n0.5+0(1) FOWS. n0.5+0(1)

Machine also has a head.

Merge sort: Head recursively
sorts first |n/2| numbers;
sorts last [n /2] numbers;
merges the sorted lists.

columns.

Merging requires ntT°() jumps
to “random’” array positions.

0.5+0(1)

Average jump: n moves

to adjacent array positions.
Each move takes n°(1) seconds.

Total sorting time:
nl-5to(1) seconds.

Cost of machine: once again
n1tol) dollars.



machine is a
\[V]

(1) cells
array:

5+0(1) columns.

1 head.

recursively
umbers;
uymbers;
lists.

Merging requires ntT°() jumps
to “random’” array positions.

0.540(1)

Average jump: n moves

to adjacent array positions.
Each move takes n°1) seconds.

Total sorting time:
nl-5to(1) seconds.

Cost of machine: once again
n1tol) dollars.

Possibility 3: The
“pipelined 2-dimer

using radix-2 sort.

Machine

has nlto

In a 2-dimensional

Each cell in the ar

network
cells In t
Each cel
network
cells in t

Inks to tl
ne same C

In the to
inks to ti

ne top row



Merging requires ntT°() jumps
to “random’” array positions.

0.5+0(1)

Average jump: n moves

to adjacent array positions.
Each move takes n°1) seconds.

Total sorting time:
nl-5to(1l) seconds.

Cost of machine: once again
n1tol) dollars.

Possibility 3: The machine is a

“pipelined 2-dimensional RAM

using radix-2 sort.”

Machine

has n1T°() cells

in a 2-dimensional array.

Each cell in the array has

network
cells In t
Each cel
network
cells in t

inks to the 2 adjacent
ne same column.

in the top row has
inks to the 2 adjacent

ne top row.



zl—l—o(l) jumps
' positions.

5+0(1) MOVES

yositions.

1°(1) seconds.

once again

Possibility 3: The machine is a
“pipelined 2-dimensional RAM
using radix-2 sort.”

Machine has nlto(1) cells

in a 2-dimensional array.

Each cell in the array has
network links to the 2 adjacent
cells in the same column.

Each cell in the top row has
network links to the 2 adjacent

cells in the top row.

Machine also has
attached to top-le

CPU can read/wri
sending request th

Does not need to
before sending ne»

CPU can read an

of n0-5To(1) cells

0.540(1) SECON!

In n
Sends all requests,

then receives resp«



Possibility 3: The machine is a
“pipelined 2-dimensional RAM
using radix-2 sort.”

Machine has nlto(1) cells

in a 2-dimensional array.
Each cell in the array has
network links to the 2 adjacent

cells in the same column.

Each cell in the top row has
network links to the 2 adjacent

cells in the top row.

Machine also has a CPU
attached to top-left cell.

CPU can read/write any cell by
sending request through network.
Does not need to wait for response
before sending next request.

CPU can read an entire row

of n0-5To(1) cells

0.5+0(1) seconds.

In n
Sends all requests,

then receives responses.



machine Is a
1sional RAM

(1) cells

array.
ray has

1e 2 adjacent
olumn.

p row has

1e 2 adjacent

V.

Machine also has a CPU
attached to top-left cell.

CPU can read/write any cell by
sending request through network.
Does not need to wait for response
before sending next request.

CPU can read an entire row

of n0-5To(1) cells

0.5+0(1) seconds.

In n
Sends all requests,

then receives responses.

Radix-2 sort: CPL

shuffles array using
even numbers befc

31415926 +—
426311509.

Then using bit 1:
4115926 3.

Then using bit 2:
11923456.

Then using bit 3:
112345609.

etc.



Machine also has a CPU
attached to top-left cell.

CPU can read/write any cell by
sending request through network.
Does not need to wait for response
before sending next request.

CPU can read an entire row

of n0-5To(1) cells

0.5+0(1) seconds.

In n
Sends all requests,

then receives responses.

Radix-2 sort: CPU

shuffles array using bit 0,
even numbers before odd.

31415926 +—
426311509.

Then using bit 1:
4115926 3.

Then using bit 2:
11923456.

Then using bit 3:
112345609.

etc.



1 CPU
ft cell.

te any cell by
rough network.
wait for response
t request.

entire row

]s.

DNSES.

Radix-2 sort: CPU
shuffles array using bit 0,

even numbers before odd.

31415926 +—
426311509.

Then using bit 1:
4115926 3.

Then using bit 2:
11923456.

Then using bit 3:
112345609.

etc.

Each shuffle takes
n1to() seconds.

n°1) shuffles.

Total sorting time
nlto(l) seconds.

Cost of machine:
nltol) dollars.



Radix-2 sort: CPU
shuffles array using bit 0,

even numbers before odd.

31415926 +—
426311509.

Then using bit 1:
4115926 3.

Then using bit 2:
11923456.

Then using bit 3:
112345609.

etc.

Each shuffle takes
n1to() seconds.

n°1) shuffles.

Total sorting time:
nlto(l) seconds.

Cost of machine: once again
n1tol) dollars.



> bit 0,
re odd.

Each shuffle takes
nlto(1) seconds.

n°1) shuffles.

Total sorting time:

nlto(1l) seconds.

Cost of machine: once again

n1to(1) dollars.

Possibility 4: The
“2-dimensional me

using Schimmler s

Machine has nlto°

In a 2-dimensional
Each cell has netw

to the 4 adjacent

Machine also has .
attached to top-le

CPU broadcasts ir
to all of the cells,

cells do most of tt



Each shuffle takes Possibility 4: The machine is a
n1to(l) seconds. “2-dimensional mesh

70(1) chuffles. using Schimmler sort.

Machine has nlto(1) cells

Total sorting time: | | |
in a 2-dimensional array.

n1to(l) seconds. _
Each cell has network links

Cost of machine: once again to the 4 adjacent cells.
n1to) dollars.

Machine also has a CPU
attached to top-left cell.
CPU broadcasts instructions

to all of the cells, but
cells do most of the processing.




once again

Possibility 4: The machine is a
“2-dimensional mesh
using Schimmler sort.”

Machine has n1to(1) cells

in a 2-dimensional array.
Each cell has network links

to the 4 adjacent cells.

Machine also has a CPU

attached to top-left cell.
CPU broadcasts instructions

to all of the cells, but

cells do most of the processing.

Sort row of nV21¢

0.5+0(1)

In n sSecont

Sort each pair in
31415926+

13145926

Sort alternate pair
13145926 +—
11345296

Repeat until numt
equals row length.

Sort each row, in |

0.540(1)

In n Secont



Possibility 4: The machine is a
“2-dimensional mesh
using Schimmler sort.”

Machine has nlto(1) cells

in a 2-dimensional array.
Each cell has network links

to the 4 adjacent cells.

Machine also has a CPU

attached to top-left cell.
CPU broadcasts instructions

to all of the cells, but

cells do most of the processing.

Sort row of n0-21o(1) cells

0.5+0(1)

n n seconds:

Sort each pair in parallel.
31415926+

13145926

Sort alternate pairs in parallel.
13145926 +—
11345296

Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.540(1)

n n seconds.



machine Is a
sh
ort.

(1) cells

array.
ork links
cells.

y CPU

ft cell.
structions
but

e processing.

Sort row of n0-21o(1) cells

0.5+0(1)

n n seconds:

Sort each pair in parallel.
31415926+

13145926

Sort alternate pairs in parallel.

13145920 —
11345296

Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.540(1)

n n seconds.

Schimmler sort:

Recursively sort qt
in parallel. Then f
Sort each column
Sort each row in
Sort each column

Sort each row in

With proper choic
eft-to-right /right-
for each row, can

that this sorts whe




Sort row of n0-21o(1) cells

0.5+0(1)

n n seconds:

Sort each pair in parallel.
31415926+
13145926

Sort alternate pairs in parallel.

13145920 —
11345296

Repeat until number of steps
equals row length.

Sort each row, in parallel,

0.540(1)

n n seconds.

Schimmler sort:

Recursively sort quadrants

in parallel. Then four steps:

Sort eac
Sort eac
Sort eac
Sort eac

n column in parallel.
n row In parallel.

n column in parallel.

n row In parallel.

With proper choice of

for each

eft-to-right /right-to-left

row, can prove

that this sorts whole array.



(1) cells
]s:

yarallel.

s in parallel.

er of steps

parallel,
Is.

Schimmler sort:

Recursively sort quadrants

in parallel. Then four steps:

Sort eac
Sort eac
Sort eac
Sort eac

n column in parallel.

n row In parallel.

n column in parallel.

n row In parallel.

With proper choice of

for each

eft-to-right /right-to-left

row, can prove

that this sorts whole array.

For example, assui
this 8 X 8 array Is

5

~N O — O W N 61 W
~ B OO DD W W wWw =
© O ©O© 0 0O o O1 H
~ 1 W OO W H O =+
~ O O H dhNM O O

| O N O = N DN N O |




Schimmler sort: For example, assume that

Recursively sort quadrants this 8 X 8 array Is in cells:
in parallel. Then ff)ur steps: 314150 0 6
Sort each column in parallel.

. 5 358 9 7 9 3
Sort each row in parallel.
Sort each column in parallel. 238 46 26064
Sort each row in parallel. 338327 95
With proper choice of 023838 4197
eft-to-right /right-to-left 16939937
for each row, can prove 51 0538 209
that this sorts whole array. /[ 4 9 4 4 5 9 2




ladrants
our steps:

in parallel.

arallel.

in parallel.

arallel.

e of
to-left
prove

le array.

For example, assume that
this 8 X 8 array Is in cells:

31415 9 26
b 3586 9 7 9 3
2 3 3 46 2 6 4
338 3 2 7 95
0 23 86 41 9 7
1 6 9 39 9 37
51 05 8 209
/74 9 4 4 5 9 2

Recursively sort qt
top —, bottom «

112 3|2 2
3 33 3|4 5
3 4 4 5|6 6
58 8 8|9 9
1 100[2 2
4 4 3 2|5 4
765 5|9 8
0 9 8 8/9 9




Recursively sort quadrants,

top —, bottom <+

1 1 2 312 2 2 3

33 3 3|4 5 5 6

34 4 5/6 6 7 7

b 83 3|9 9 9 9
1 1002 2 10
4 4 3 2|5 4 4 3
(6 5 5|9 8 7 7
9 9 83 3/9 9 99

For example, assume that

this 8 X 8 array Is in cells:

31 415 9 26
b 3586 9 7 9 3

2 3 8 4 6 2 6 4

33383 27 95

0 23 86 41 9 7

1 6 9 39 9 37
51 05 8 2009

(4 9 4 4 5 9 2




Sort each column

in parallel:

111]0l0]2]2
111]2(2]2]2
31313344

314133515

414141566

516|559 |3
718183399
91918138199

Recursively sort quadrants,

top —, bottom <+

1 1 2 312 2 2 3

33 3 3|4 5 5 6

34 4 5/6 6 7 7

b 83 3|9 9 9 9
1 1002 2 10
4 4 3 2|5 4 4 3
(6 5 5|9 8 7 7
9 9 83 3/9 9 99

me that

In cells:

4
5

2
2
9
2

0




O M M © ~ N~ O O
— N S O~ N~ O O
- N N < 1O © 0 O O
m N N < 1O © O O O
O O N ™M M O 1 0
S 2L o m om < 1O o ©
U (o
V5 |mW A o - © 0o o
T o
%n11334579
4
c M © ~ OO0 MO ~ O
Y
e, N O~ O+ < ~ o
(qV]
T
>l [N w o ola ¥ o o
Mm N < © Ol 1O o O
O
V)]
S DM MmO 0O N IO ©
= 0
29 ' cinm o 0|l » b ©
=
m% — M <t O+ S O o
o o
Yy O [ ™ »m v~ < N~ O
)




Sort each row in [

alternately <, —:

0001 1 1

3222 2 9

3 3 3 3 3 4
6 555 4 3

4 4 45 6 6

087 7 6 5

788 8 9 O
099 99 9 9

Sort each column

in parallel:

1111010121210
11112(2(12]|2(2]3

313(3(3(4|44|3

314(3]3|5|5]5|6

41414 |5|6|6|7|T7

5106|5598 |7 |7
718183919199
9191818919199

1adrants,

9

9
1

9

9




= N | |||~ |00
ﬂra N | | | |~ || 00
@V
o - AN || N0 || oo
-
W N n ||l |o o
O ¥ — N[ [O|[WO [~ |O
>
M Q ol |m|w|x |~ || o
(@]
V c locnmm|lwvo|x |00 | o
£ o
O £ |olm|m|lo|dglo|~|o
U) @
O M M O ~~ I~ O O
— N < IO~ N~ O O
- N N < 1O © 0 O O
m AN N < OO OO O
O O N ™M M O 1 0 ©
S 2L o ®m m < 1O o ©
C (T
V5 | A o & © 0o o
© o
%W = —~N = M M I O N~ O




— l— ON O < O O O O |
m — N N S O O O O
w — N M W~ 00 O
S L o om0~ 0 o
W @
v 5 o oo s 0o 0o o o
© o
%W c |[©O MO M < O N~ O O
—= N | A || O~ || 00
ﬂra N | | | O~ || 00
@V
o - | AN || MmO |1 |o
-
W N n |||l | |o
O ¥ ||l N|OO ||| |N~|]O |
>
Mm ol m|lwv|lg|~]|0 ]| o
(V]
V c locnlmm|lwvo|x |0 |0 | o
£ o
o X o EEOGEELEECRE SE NI e
U) @
O M M O~ ~ O O
— N < O~ N~ O O




— AN O < IO M~ 00 O
— N M < OO~ 00 O
n N o T i T B e B =) B =)
m — N M < O OV O O
O — N M O 1O M~ 00 O
S L o om0~ 0 o
C (T
v 5 o o s 0o 0o o o
© o
%V — O MO MO F O ~ O O
= N |||~ ||
ﬂra N | | | O~ |O |00
@V
o - | H|N|lfT | n|jo | v lo|lo
-
W N | 0O oo
O ¥ — N[ [O|[WO [~ |O
>
M Q ol |m|w|< |~ ||
(@]
V c locnmm|lwvo|x |0 |0 | o
£ o
O X2 lolmlm|lolglo|l~|o
U) @




= O |/ | AN M SO >0 O
i
T Y AN O~ O
< S
O o, |m|N|OO ||| N~|]0|OD
— (@]
C% oOlN| M| g 1|~ | O
@V
V ¢ ol | vl |0 |o
+ O
O Ol AN M |T |1 |O© |00 |
A+
— AN O < IO M~ 00 O
— N 0 < O M~ 00 O
n — N 0 < OO O O
m — N N S O O O O
w — N M WO~ 00 O
S L o om0~ 0 o
W @
v 5 o o s 0o 0o o o
© o
%W c |[©O MO M < O M~ O O
—= N | A || O~ |>™ |00
ﬂra N || | O~ || 00
@V




= —A || |lwv|loloo|lo|o
ﬂra —A N || O |~ O
R -5
0O P || Nt |wvo|~lOo|o
i
T Y AN O~ O
< S
O o, |m|N|OO ||| N~]|]0|O
ha
C% oOlN| M| g 1|~ | O
@V
V ¢ ol vl |0 |o
._HO
O Ol AN M|T |1 |O© |00 | D
A+
— AN O < O M~ 00 O
— N 0 < O M~ 00 O
n — N 0 < OO O O
m — N N S O O O O
O — N M O 1O M~ 00 O
S L o o < 10~ 0 o
W @
v 5 o o s 0o 0o o o
© o
%Vn O MO MO F O ~ O O




© 00 ~N O A W N H
© 00 ~N O A W N =

Sort each row in parallel, Sort one row

& or — as desired: in n9-57°(1) secon
0 001 1111 All rows in parallel
2 2 2 2 2 2 2 3 n0-5+0(1) seconds.
33333333 Total sorting time
4 4 4 4 4 4 4 5 n0-5+0(1) seconds.
D 5 5 555606 Cost of machine:
6 6 7 7 7 7 7 8 n1tol) dollars.

8 8 8 88 9 9 9

999 9 9 9 99




Sort each row in parallel, Sort one row

& or — as desired: in n0-5to(1) seconds.

0 0011111 All rows in parallel:

2 2 2 2 2 2 2 3 n0-5+0(1) seconds.
33333333 Total sorting time:

4 4 4 4 4 4 4 5 n0-5+0(1) seconds.

5 5 55 5506 Cost of machine: once again
6 6 7 7 7 7 7 8 nlto(1) dollars.

3 8 83 33 9 9 9

9 90 9990 9 99




arallel, Sort one row Some philosophica

i in n0-5to(1) seconds. .
1-tape Turing mac
All rows In parallel: RAMs, 2-dimensio
n0-5+0(1) seconds. compute the same
Total sorting time: Prove this by prov
n0-5+to(1) seconds. each machine can

computations on t

Cost of machine: once again
n1to(1) dollars. (We believe that

reasonable model

can be simulated |

O O | N[O | P~ OWIDND| B
O O | 0[O |OCT| W W |

1-tape Turing mac
“Church-Turing th




Sort one row Some philosophical notes

in n9-512(1) seconds. . .

1-tape Turing machines,
All rows in parallel: RAMs, 2-dimensional meshes
n0-5+0(1) seconds. compute the same functions.
Total sorting time: Prove this by proving that
n0-5+0(1) seconds. each machine can simulate

. . computations on the others.
Cost of machine: once again

n1to(1) dollars. (We believe that every
reasonable model of computation

can be simulated by a
1-tape Turing machine.
“Church-Turing thesis.”)




1s.

once again

Some philosophical notes

1-tape Turing machines,
RAMSs, 2-dimensional meshes
compute the same functions.

Prove this by proving that
each machine can simulate
computations on the others.

(We believe that every

reasonable model of computation
can be simulated by a

1-tape Turing machine.
“Church-Turing thesis.”)

1-tape Turing mac
RAMs, 2-dimensio
compute the same
in polynomial time
at polynomial cost

Prove this by prov
simulations are po

(Is this true for ev
reasonable model .
Quantum compute
factor in polynomi
Can Turing machi
Can quantum com



Some philosophical notes

1-tape Turing machines,
RAMSs, 2-dimensional meshes
compute the same functions.

Prove this by proving that
each machine can simulate
computations on the others.

(We believe that every

reasonable model of computation
can be simulated by a

1-tape Turing machine.
“Church-Turing thesis.”)

1-tape Turing machines,
RAMs, 2-dimensional meshes
compute the same functions
in polynomial time

at polynomial cost.

Prove this by proving that

simulations are polynomial.

(Is this true for every

reasonable model of computation?
Quantum computers can

factor in polynomial time.

Can Turing machines do that?

Can quantum computers be built?)



| notes

hines,
nal meshes
functions.

ing that
simulate
he others.

very
of computation
WA

hine.

esis.” )

1-tape Turing machines,
RAMs, 2-dimensional meshes
compute the same functions
in polynomial time

at polynomial cost.

Prove this by proving that
simulations are polynomial.

(Is this true for every

reasonable model of computation?
Quantum computers can

factor in polynomial time.

Can Turing machines do that?

Can quantum computers be built?)

1-tape Turing mac
RAMs, 2-dimensio
do not compute

the same function:
within, e.g., time

and cost nlto(l)

Example: 1-tape
cannot sort in ni
Too local.

Example: 2-dimen

. F
cannot sort In no“

Too sequential.



1-tape Turing machines, 1-tape Turing machines,

RAMSs, 2-dimensional meshes RAMSs, 2-dimensional meshes
compute the same functions do not compute

in polynomial time the same functions

at polynomial cost. within, e.g., time nlto(1)

1+o0(1)
Prove this by proving that and cost n |

simulations are polynomial. Example: 1-tape Turing machine

. cannot sort in nlt°(1) seconds.
(Is this true for every

reasonable model of computation? Too local

Quantum computers can Example: 2-dimensional RAM
factor in polynomial time. cannot sort in n9-57°(1) seconds.
Can Turing machines do that? Too sequential.

Can quantum computers be built?)




hines,
nal meshes
functions

)

ing that
lynomial.

ery
of computation?
rs can

al time.

nes do that?
puters be built?)

1-tape Turing machines,
RAMSs, 2-dimensional meshes
do not compute

the same functions

within, e.g., time nlto(l)

and cost nlto(l)

Example: 1-tape Turing machine
cannot sort in ntT°(1) seconds.

Too local.

Example: 2-dimensional RAM
cannot sort in n0-51°(1) seconds.
Too sequential.

Review of sorting -
measured In secon
machine costing n

n2-0+0o(1), 1-tape
n1-5to(1). 2 dimer
nl-0+o(l). pipeline
n0-5+o(1). 2_dimer

Why does anyone
sorting time Is nl-
Why choose third

Silly! Fourth macl



1-tape Turing machines,
RAMSs, 2-dimensional meshes
do not compute

the same functions

within, e.g., time nlto(l)

and cost nlto(l)

Example: 1-tape Turing machine
cannot sort in ntT°(1) seconds.

Too local.

Example: 2-dimensional RAM
cannot sort in n0-51°(1) seconds.
Too sequential.

Review of sorting times,
measured in seconds, for
machine costing n1t°(1) dollars:

n20+o(1). 1_tape Turing machine.

)

n15+o(1). 2_dimensional RAM.
)
)

n1-0+o(1), pipelined RAM.
. 2-dimensional mesh.

Why does anyone say that
sorting time is nlto(1)?

Why choose third machine?
Silly! Fourth machine is better!



hines,
nal meshes

>

n 1+0(1)

[uring machine
o(1) seconds.

sional RAM
+0(1) seconds.

Review of sorting times,

measured in seconds, for

machine costing n1t°(1) dollars:

n2-0+o(1
nl.5+0(1

. 1-tape Turing machine.
. 2-dimensional RAM.
. pipelined RAM.

. 2-dimensional mesh.

Why does anyone say that

sorting time is nlto(1)?

Why choose third machine?

Silly! Fourth machine is better!

Warning: o(1) is ¢
Speedup factor sus
might not be a sp
for small values of

When n is small,
RAM might seem
sensible machine ¢

But, once n is larg
having a huge mel
waiting for a singl
is a silly machine «



Review of sorting times,
measured in seconds, for
machine costing n1t°(1) dollars:

n20+o(1). 1_tape Turing machine.
n1-5to(1). 2_dimensional RAM.
n1-0+o(1), pipelined RAM.

)

- 2-dimensional mesh.

Why does anyone say that
sorting time is nlto(1)?

Why choose third machine?
Silly! Fourth machine is better!

Warning: o(1) is asymptotic.
Speedup factor such as n9-5+o(1)
might not be a speedup

for small values of n.

When n is small,
RAM might seem to be a
sensible machine design.

But, once n i1s large enough,
having a huge memory
waiting for a single CPU

is a silly machine design.



times,

ds, for
1+0(1) dollars:

Turing machine.

1sional RAM.
d RAM.

1sional mesh.

say that
-o(1) 7

machine?
1ine Is better!

Warning: o(1) is asymptotic.
Speedup factor such as n9-5+o(1)
might not be a speedup

for small values of n.

When n is small,
RAM might seem to be a
sensible machine design.

But, once n i1s large enough,
having a huge memory
waiting for a single CPU

is a silly machine design.

Myth:

Parallel computati

Improve price-
p parallel com

aerf‘

DUte

may reduce time k

but Increase cost |

Reality: Can often

a large serial com|

into p small parall

so cost does not

increase by factor



Warning: o(1) is asymptotic. Myth:

Speedup factor such as n0-5+0(1) Parallel computation cannot
might not be a speedup improve price-performance ratio;
for small values of n. p parallel computers

When n is small may reduce time by factor p

RAM might seem to be a
sensible machine design. Reality: Can often convert

but increase cost by factor p.

. a large serial computer
But, once n is large enough,

having a huge memory into » small parallel cells,

. . so cost does not
waiting for a single CPU

Is a silly machine design. increase by factor p.




isymptotic.
~h as n0-5+o(1)
cedup

n.

to be a
lesign.

re enough,
nory

= CPU
lesign.

Myth:

Parallel computation cannot

Improve price-
p parallel com

berformance ratio:

outers

may reduce time by factor p

but increase cost by factor p.

Reality: Can often convert

a large serial computer

into » small parallel cells,

so cost does not

increase by factor p.

Myth: Designing

cannot produce m

SMmad
com

| constant-fac

nared to, e.g.,

What matters is s

streamlining, such

Instruction-decodii

Reality: In 1997, |

Was

1000 times fa:

set of Pentiums at

What matters is p



Myth: Myth: Designing a new machine

Parallel computation cannot cannot produce more than a
improve price-performance ratio; small constant-factor improvement
p parallel computers compared to, e.g., a Pentium.
may reduce time by factor p What matters is special-purpose
but increase cost by factor . streamlining, such as reducing

. Instruction-decoding costs.
Reality: Can often convert &

a large serial computer Reality: In 1997, DES Cracker
into p small parallel cells, was 1000 times faster than a
so cost does not set of Pentiums at the same price.

increase by factor . What matters is parallelism.




Myth: Designing a new machine Future computers

on cannot cannot produce more than a massively parallel
ormance ratio; small constant-factor improvement Look at o(1) detal
rS compared to, e.g., a Pentium. we've reached larg
y factor p What matters is special-purpose

Computer designe
today’'s RAM-style

y factor p. streamlining, such as reducing

instruction-decoding costs.

convert just as we laugh a
uter Reality: In 1997, DES Cracker a 1-tape Turing m
el cells, was 1000 times faster than a .
| | Algorithm experts
set of Pentiums at the same price. , .
_ | today's dominant
D. What matters is parallelism.

algorithm analysis,
count CPU “operz
VIEW memory acce




Myth: Designing a new machine Future computers will be

cannot produce more than a massively parallel meshes.
small constant-factor improvement Look at o(1) details to see that
compared to, e.g., a Pentium. we've reached large enough n.

What matters iIs special-purpose . .
P PUTP Computer designers will laugh at

streamlining, such as reducing

today's RAM-style machines,

instruction-decoding costs. .
just as we laugh at

Reality: In 1997, DES Cracker a 1-tape Turing machine.

was 1000 times faster than a . .
Algorithm experts will laugh at

set of Pentiums at the same price. , .
today’'s dominant style of

What matters is parallelism.

algorithm analysis, where we
count CPU “operations” and
view memory access as free.




) new machine
ore than a

tor improvement
a Pentium.
necial-purpose
as reducing

1g COSTtS.

DES Cracker
ster than a

the same price.
arallelism.

Future computers will be

massively parallel meshes.
Look at o(1) details to see that
we've reached large enough n.

Computer c

today’'s RAM-style mac

esigners wil

just as we laugh at

laugh at

nines,

a 1-tape Turing machine.

Algorithm experts wi
today's dominant sty
algorithm analysis, w

| laugh at
e of
nere we

count CPU “operations” and

view memory access as free.

Collision search

Common cryptana

Find

collision in H

Input: Program tc

at high speed.

H is
250-
250-

a function frc
oIt strings to

oIt strings.

Output: 256-bit st

sucn

dNG

that 1 # -
H(z1) = H(z



Future computers will be
massively parallel meshes.

Look at o(1) details to see that
we've reached large enough n.

Computer designers will laugh at

today’'s RAM-style machines,
just as we laugh at
a 1-tape Turing machine.

Algorithm experts will laugh at
today’'s dominant style of

algorithm analysis, where we
count CPU “operations” and
view memory access as free.

Collision search

Common cryptanalytic problem:

Find collision in H.

Input: Program to compute H

at high speed.

H is a function from
256-bit strings to
256-bit strings.

Output: 256-bit strings x1, x>

SUucC

n that z1 # o

dNG

H(z1) = H(z2).



will be
meshes.

Is to see that
e enough n.

s will laugh at

' machines,
t
achine.

will laugh at
style of

“where we
tions’ and
ss as free.

Collision search

Common cryptanalytic problem:

Find collision in H.

Input: Program to compute H

at high speed.

H is a function from
256-bit strings to
256-bit strings.

Output: 256-bit strings x1, 7

SUucC

n that z1 # o

dNG

H(z1) = H(z2).

For any 256-bit 7:
Compute H(r), H!
until finding a stri
that begins with 4
(A “distinguished

Call that string Z|

Oops, Z(r) might
But usually it doe:

Computing Z(7) t
involves ~ 240 inp



Collision search

Common cryptanalytic problem:

Find collision in H.

Input: Program to compute H

at high speed.

H is a function from
256-bit strings to
256-bit strings.

Output: 256-bit strings x1, x>

SUucC

n that z1 # o

dNG

H(z1) = H(x2).

For any 256-bit 7:

Compute H(r), H(H(T)), ...
until finding a string

that begins with 40 zero bits.
(A “distinguished point." )
Call that string Z(r).

Oops, Z(r) might not exist.
But usually 1t does.

Computing Z(r) typically

240

involves =~ inputs to H.



lytic problem:

i

 compute H

)M

rings i, T

2).

For any 256-bit 7:
Compute H(r), H(H(T)), ...
until finding a string

that begins with 40 zero bits.

(A “distinguished point." )
Call that string Z(r).

Oops, Z(r) might not exist.
But usually 1t does.

Computing Z(r) typically
involves ~~ 249 inputs to H.

Choose random 71
Compute Z(71), Z

Uses ~ 2*0n input
r1, H(r1), H2(r1),
ro, H(72), H2('r2),

T, H(ry), H2(rn)

"Birthday paradox
~ 2902 Input pal
chances for a colli



For any 256-bit 7:
Compute H(r), H(H(T)), ...
until finding a string

that begins with 40 zero bits.

(A “distinguished point." )
Call that string Z(r).

Oops, Z(r) might not exist.
But usually 1t does.

Computing Z(r) typically
involves ~~ 249 inputs to H.

Choose random 71,79, ..., T,
Compute Z(r1), Z(72), ..., Z(T7n).

Uses ~ 2497 inputs to H:
r1, H(r1), H?(r1), H3(r1), . ..
ro, H(ra), H?(12), H3(72), . . .

;“n, H(ry), H2(rn), H3('rn), .

"Birthday paradox’:
~ 2192 Input pairs, so ~ 2719p2
chances for a collision in H.



H(r)),...

g

0 zero bits.

point.” )
Wl

not exist.

5.

ypically
uts to H.

Choose random 71,79, ..., T,

Compute Z(71), Z(7r2), ..., Z(Tn).

Uses ~ 2497 inputs to H:
r1, H(r1), H?(r1), H3(r1), . ..
ro, H(ra), H?(12), H3(72), . . .

T, H(Tn), H2(rn), H3('rn), .

"Birthday paradox’:
~ 2792 Input pairs, so ~ 219p2
chances for a collision in H.

Say there's a collis
H161(‘r‘2) _ H190(,
Z(r) is after H1O
Z(r7) is after H
and H%0(ry) £ K

Then Z(rpy) = Z(:
Recognize this by
Z(r1),Z(r2),...,
and comparing ad
Backtrack to find

Oops, may have
backtracking can |
But usually not a



Choose random 71,79, ..., T,

Compute Z(71), Z(7r2), ..., Z(Tn).

Uses ~ 2497 inputs to H:
r1, H(r1), H?(r1), H3(r1), . ..
ro, H(ra), H?(12), H3(73), . ..

T, H(Tn), H2(rn), H3('rn), .

"Birthday paradox’:
~ 2192 Input pairs, so & 219p2
chances for a collision in H.

Say there's a collision: e.g.,
H*(ry) = H190(r7) where
Z(r2) is after H01 (1),
Z(r7) is after H0(r7),
and HO(rp) #£ HI(r7).

Then Z(r2) = Z(77).

Recognize this by sorting
Z(r1),Z(r2), ..., Z(Tn)

and comparing adjacent outputs.
Backtrack to find collision.

Oops, may have multiple collisions;
backtracking can be expensive.
But usually not a problem.



s, SO & 279792

sion 1n H.

Say there's a collision: e.g.,
H*(ry) = H190(r7) where
Z(r2) is after H®1 (1),
Z(r7) is after H0(77),
and HO(rp) #£ HI(r7).

Then Z(r2) = Z(77).

Recognize this by sorting
Z(r1),Z(r2),..., Z(Tn)

and comparing adjacent outputs.
Backtrack to find collision.

Oops, may have multiple collisions;
backtracking can be expensive.
But usually not a problem.

Serial computer:

~ 2407, evaluation
~ nlogn sorting :
~ 256n bits of RA

2-dimensional mes
with n parallel prc
~ 20 evaluations
~ 8+/M sorting ste
~ n small cells.

Mesh computer is
about n times fasi
not much more ex



Say there's a collision: e.g.,
H*(ry) = H190(r7) where
Z(r2) is after H®1 (1),
Z(r7) is after H0(r7),
and HO(rp) #£ HI(r7).

Then Z(r2) = Z(77).

Recognize this by sorting
Z(r1),Z(r2),..., Z(rn)

and comparing adjacent outputs.
Backtrack to find collision.

Oops, may have multiple collisions;
backtracking can be expensive.
But usually not a problem.

Serial computer:

~ 2401 evaluations of H;
~ n logn sorting steps;
~ 256n bits of RAM.

2-dimensional mesh computer
with n parallel processors:

~ 240 evaluations of H.

~ 8+/m sorting steps;

~ n small cells.

Mesh computer is
about n times faster,
not much more expensive.



ion: e.g., Serial computer: Using collision sea

r7) where ~ 240n evaluations of H; for “discrete logar
1 ; .
72), ~ nlogn sorting steps; .
0( 2) & _ & StEP Want to figure ou
(17), ~ 256m bits of RAM. .
189 P, kP on an ellipti
7). . .
(77) 2-dimensional mesh computer .
" ol Define H(z,y) =
r= ). with v parallel processors: . .. .
7). by e P Find collision in H
sorting ~ 2" evaluations of H:
| usually reveals k.
Z(Tn) ~ 8+4/M sorting steps;
acent outputs. ~ n small cells. Price-performance
.. 1/2 1
collision. | g*/27°) dollar-se
Mesh computer is . .
_ o | if curve has g poir
\wultiple collisions; about n times faster, .
| | Fancier methods,
e expensive. not much more expensive.

rho, kangaroo, etc
problem.




Serial computer: Using collision search
~ 2*0n, evaluations of H: for “discrete logarithms"
~ n logn sorting steps;

| Want to figure out k£ given
~ 2b6m bits of RAM.

P, kP on an elliptic curve.

2-dimensional mesh computer Define H(z,y) = =P + ykP.

with n parallel processors: . L
P P Find collision in H:;

~ 2%0 evaluations of H-:
usually reveals k.

~ 8+4/M sorting steps;
~ n small cells. Price-performance ratio:
q1/2+°(1) dollar-seconds

Mesh computer is . .
if curve has g points.

about n times faster, .
Fancier methods, same 1/2:

not much more expensive.
rho, kangaroo, etc.




