
Efficient arithmetic

on elliptic curves

in large characteristic

D. J. Bernstein

University of Illinois at Chicago



Fix a field and an elliptic curve.

e.g. NIST P-224: the elliptic curve

y2 = x3 � 3x + a6 over Z=p.
Here p = 2224 � 296 + 1

and a6 = 18958286285566608
00040866854449392
64155046809686793
21075787234672564.

e.g. NIST P-256: the elliptic curve

y2 = x3 � 3x+ � � � over Z=p where

p = 2256 � 2224 + 2192 + 296 � 1.

e.g. Curve25519: the elliptic curve

y2 = x3 + 486662x2 + x over Z=p
where p = 2255 � 19.



“Elliptic-curve

scalar multiplication”:

Given (x; y) on curve,

and given integer n � 0,

compute nth multiple of (x; y)

in the elliptic-curve group.

This is the bottleneck in

elliptic-curve Diffie-Hellman.

The big question:

How quickly can we do this?

Many variations of problem:

e.g. m;n; P;Q 7!mP + nQ,

critical for elliptic-curve signatures.



Review of addition chains

Typical recursive formulas:

2P = P+P . 3P = 2P+P .

4P = 2P+2P . 5P = 3P+2P .

6P = 3P+3P . 7P = 5P+2P .

2nP = 7P+(n�7)P if 4�n<8.

(2n+1)P = 2nP+P if 4�n<8.

(4n+1)P = 4nP+P if 4�n<8.

(4n+3)P = 4nP+3P if 4�n<8.

2nP = nP+nP if 8 � n.

(8n+1)P = 8nP+P if 4 � n.

(8n+3)P = 8nP+3P if 4 � n.

(8n+5)P = 8nP+5P if 4 � n.

(8n+7)P = 8nP+7P if 4 � n.



This addition chain

(“length-3 sliding windows”)

uses � lgn doublings and

� 0:25 lgn more additions

to compute nP for average n.

e.g. � 320 additions for

average n 2 �
0; 1; : : : ; 2256 � 1

	
.

Some easy improvements from

fast negation on elliptic curves:

(16n� 7)P = 16nP � 7P , etc.

Also use endomorphisms for

“Koblitz curves,” “GLV curves.”

More complicated methods

replace 0:25 by � 1=lg lgn.



Explicit doubling formulas

On curve y2 = x3 � 3x + a6:

2(x; y) = (x00; y00) where

� = (3x2 � 3)=2y,

x00 = �2 � 2x,

y00 = �(x� x00)� y.

7 subs etc., 2 squarings,

1 more mult, 1 division.

How do we divide efficiently

in a finite field?



f=g = fgp�2 in prime field Z=p.
Can compute gp�2 with

� lg p squarings and

� (lg p)=lg lg p more mults.

e.g. p = 2224 � 296 + 1:

223 squarings, 11 more mults.

More generally, f=g = fgq�2

in any field of size q.
There are faster division methods

(e.g. “Euclid”—beware timing

attacks!); smaller “I/M ratio.”

Special methods for some fields.



Speedup: delay divisions

Division costs many mults

even with fastest division methods.

Save time by delaying divisions.

Naive division-delay method:

Store field elements as fractions

until end of computation.

Divide once before output.

Mult fractions with 2 field mults.

Divide fractions with 2 field mults.

Add fractions with 3 field mults.



Speedup: unify denominators

For elliptic-curve doubling,

have denominator 2y
in � = (3x2 � 3)=2y;

denominator (2y)2

in x00 = �2 � 2x;

denominator (2y)3

in y00 = �(x� x00)� y.

Subsequent computations will

perform separate computations

on the denominators (2y)2; (2y)3

of x00; y00.
Save time by manipulating

denominators together.



“Jacobian coordinates”:

Store (x; y; z) to represent

elliptic-curve point (x=z2; y=z3).

2(x=z2; y=z3) = (x00; y00) where

� = (3(x=z2)2 � 3)=2(y=z3)

= �=2yz with � = 3x2 � 3z4;

x00 = �2 � 2(x=z2)

= (�2 � 8xy2)=(2yz)2;
y00 = �((x=z2)� x00)� (y=z3)

= (12xy2���3� 8y4)=(2yz)3.



2(x=z2; y=z3) = (x2=z2
2 ; y2=z3

2)

where z2 = 2yz,
� = 3x2 � 3z4,

x2 = �2 � 8xy2,

y2 = �(4xy2 � x2)� 8y4.

Easily compute with 6 squarings,

3 more mults: x2, z2, z4, y2, y4,

yz, xy2, �2, �(� � �).
Also some subs, doublings, etc.

Use fast field arithmetic:

e.g., can delay carries and

reductions in computing y2.



Speedup: difference of squares

Can compute 3x2 � 3z4 as

3(x� z2)(x + z2).

Replace 3 squarings by 1 mult,

1 squaring. Revised total:

4 squarings, 4 more mults.

Note:

3x2 � 3z4 came from 3x2 � 3,

derivative of x3 � 3x + a6.

Wouldn’t have same speedup

for, e.g., x3 � 5x + a6.



Speedup: f2; g2; 2fg
After computing f2 and g2

can compute 2fg
as (f + g)2 � f2 � g2.

In particular:

After computing y2 and z2

can compute 2yz
as (y + z)2 � y2 � z2.

Replace 1 mult with 1 squaring.

Revised total: 5 squarings,

3 more mults.



Explicit addition formulas

Similar speedups in formulas

for adding distinct points.

5 squarings, 11 more mults.

Again some opportunities

to delay carries, etc.



Speedup: cache results

In adding (x1=z2
1 ; y1=z3

1)

to (x2=z2
2 ; y2=z3

2),

compute many intermediates,

including z2
1 ; z3

1 .

Often add same point again

to a different point;

can reuse z2
1 ; z3

1 .

“Chudnovsky coordinates.”



Speedup: delay fewer divisions?

Faster divisions sometimes justify

delaying fewer divisions.

e.g. Do we really need

fractions for P; 3P; 5P; 7P?

Can convert P; 3P; 5P; 7P
out of Jacobian coordinates

with one division, several mults.

Then save mults in every

addition of P; 3P; 5P; 7P .

“Mixed coordinates.”

Sometimes worthwhile,

depending on division speed.



Montgomery coordinates

On elliptic curves with

“Montgomery form”

y2 = x3 + a2x2 + x,

preferably with small (a2 � 2)=4:

n(x1; : : :) = (xn=zn; : : :) where

z1 = 1; x2m = (x2m � z2m)2;

z2m=4xmzm(x2m+a2xmzm+z2m);

x2m+1=4(xmxm+1�zmzm+1)
2;

z2m+1=4(xmzm+1�zmxm+1)
2x1.

Can also figure out y,

or use cryptographic protocols

that ignore y.



xm
�� ##GG

GG
GG

zm
{{ww

ww
ww

��

xm+1

&&LLLLLLL

��

zm+1

xxrrrrrrr

��
+

���� ,,XXXXXXXXXXXXXXXXXXXXXXX �
���� %%JJJJJJJ +

��

�
��

�

��-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

�� ##GG
GG

GG
�
��{{ww

ww
ww

�
�� &&LLLLLLLL �

��xxrrrrrrrr

�

��

�
��

��

+

����

�
����

�

��

�

��

�

��
+

��

a2�2
4

ccGGGGGG

�

��

�
��

x1

::tttttttt

x2m z2m x2m+1 z2m+1



Assuming (a2 � 2)=4 small,

main operations are

4 squarings, 5 more mults

for each bit of n.

Compare to Jacobian coordinates:

each bit of n has

5 squarings, 3 more mults,

and on occasion

5 more squarings, 11 more mults.

Montgomery form is better

if n is not gigantic.



What are today’s speed records?

Let’s focus on Pentium M.

Each Pentium M cycle does

� 1 floating-point operation:

fp add or fp sub or fp mult.

Current scalar-multiplication

software for y2 = x3+486662x2+x
over Z=(2255 � 19):

640838 Pentium M cycles.

589825 fp ops; � 0:92 per cycle.

Understand cycle counts fairly well

by simply counting fp ops.



Main loop: 545700 fp ops.

2140 times 255 iterations.

Reciprocal: 43821 fp ops.

41148 = 254 � 162 for 254 squares;

2673 = 11 � 243 for 11 more mults.

Additional work: 304 fp ops.

Inside one main-loop iteration:

80 = 8 � 10 for 8 adds/subs;

55 for mult by 121665;

648 = 4 � 162 for 4 squarings;

1215 = 5 � 243 for 5 more mults;

142 for bx[1] + (1� b)x[0] etc.



An integer mod 2255 � 19 is

represented in radix 225:5
as a sum of 10 fp numbers

in specified ranges.

Add/sub: 10 fp adds/subs.

Delay reductions and carries!

Mult: poly mult using

102 fp mults, 92 fp adds;

reduce using 9 fp mults, 9 fp adds;

carry 11 times, each 4 fp adds;

overall 2 � 102 + 4 � 10 + 3 fp ops.

Squaring: first do 9 fp doublings;

then eliminate 92 + 9 fp ops;

overall 1 � 102 + 6 � 10 + 2 fp ops.



Course advertisement

“High-speed cryptography”

at the Fields Institute, 36 hours,

starting 23 Oct, ending 17 Nov.

What are the state-of-the-art

cryptographic functions for

sharing secrets, expanding keys,

authenticating data, signing data?

How fast are these functions

in software for typical CPUs?

What’s known about security?

How were the functions chosen?

cr.yp.to/highspeed.html


