
The DNS security mess

D. J. Bernstein

University of Illinois at Chicago

The Domain Name System

fsf.org wants to see

http://www.redhat.com.

'& %$! "#Browser at fsf.org

'& %$! "#Administrator at redhat.com

“The web server

www.redhat.com

has IP address

96.6.144.112.”

OO

Now fsf.org

retrieves web page from

IP address 96.6.144.112.

Same for Internet mail.

fsf.org has mail to deliver to

someone@redhat.com.

'& %$! "#Mail client at fsf.org

'& %$! "#Administrator at redhat.com

“The mail server for

redhat.com

has IP address

66.187.233.32.”

OO

Now fsf.org

delivers mail to

IP address 66.187.233.32.

Forging DNS packets

fsf.org has mail to deliver to

someone@redhat.com.

'& %$! "#Mail client at fsf.org

'& %$! "#Attacker anywhere on network

“The mail server for

redhat.com

has IP address

157.22.245.20.”

OO

Now fsf.org

delivers mail to

IP address 157.22.245.20,

actually the attacker’s machine.

Actually: Client sends query;

attacker has to repeat

some bits from the query.

Actually: Client sends query;

attacker has to repeat

some bits from the query.

Network probably has at least

one attacker-controlled machine.

That machine sniffs network,

trivially forges DNS packets.

Actually: Client sends query;

attacker has to repeat

some bits from the query.

Network probably has at least

one attacker-controlled machine.

That machine sniffs network,

trivially forges DNS packets.

“No sniffers on my network!”

: : : so a blind attacker

guesses the bits to repeat,

eventually gets lucky.

After analysis, optimization:

blind forgery is about as easy

as downloading a movie.

Amazing news

Tuesday 2 June 2009:

“.ORG becomes the first open

TLD to sign their zone with

DNSSEC : : :Today we reached

a significant milestone in our

effort to bolster online security

for the .ORG community. We are

the first open generic Top-Level

Domain to successfully sign our

zone with Domain Name Security

Extensions (DNSSEC). To date,

the .ORG zone is the largest

domain registry to implement this

needed security measure.”

“What does it mean that the

.ORG Zone is ‘signed’?

Signing our zone is the first part

of our DNSSEC test phase.

We are now cryptographically

signing the authoritative data

within the .ORG zone file.

This process adds new records to

the zone, which allows verification

of the origin authenticity and

integrity of data.”

Cryptography! Authority!

Verification! Authenticity!

Integrity! Sounds great!

Cryptography! Authority!

Verification! Authenticity!

Integrity! Sounds great!

Now I simply configure

the new .org public key

into my DNS software.

Because the .org servers

are signing with DNSSEC,

it is no longer possible

for attackers to forge

data from those servers!

Cryptography! Authority!

Verification! Authenticity!

Integrity! Sounds great!

Now I simply configure

the new .org public key

into my DNS software.

Because the .org servers

are signing with DNSSEC,

it is no longer possible

for attackers to forge

data from those servers!

... or is it?

Let’s find a .org server:

$ dig +short ns org

d0.org.afilias-nst.org.

b0.org.afilias-nst.org.

a0.org.afilias-nst.info.

c0.org.afilias-nst.info.

b2.org.afilias-nst.org.

a2.org.afilias-nst.info.

$ dig +short \

b0.org.afilias-nst.org

199.19.54.1

Look up one of my domains:

$ dig \

www.mwisc.org @199.19.54.1

Everything looks normal:

;; AUTHORITY SECTION:

mwisc.org. 86400

IN NS d.ns.mwisc.org.

mwisc.org. 86400

IN NS f.ns.mwisc.org.

;; ADDITIONAL SECTION:

d.ns.mwisc.org. 86400

IN A 131.193.36.21

f.ns.mwisc.org. 86400

IN A 131.193.36.24

Now ask for signatures:

$ dig +dnssec \

www.mwisc.org @199.19.54.1

Same answer as before,

plus four new records:

h9p7u7tr2u91d0v0ljs9l1gid

np90u3h.org. 86400 IN TYP

E50 \#39 0101000104D399EA

AB148A77C7ACEFCBC55446032

B2D961CC5EB6821 EF2600072

2000000000290

h9p7u7tr2u91d0v0ljs9l1gid

np90u3h.org. 86400 IN RRS

IG TYPE50 7 2 86400 20090

70721303120090623203031 3

7493 org. lkzaiDXNZExggNf

W3PFLNRP8WPTECXUWH0tktDjX

thkE60pm6LoTOrRq TgfwK7NS

4GjN98rwqKH7iCfRr09CJ1BzC

XIdtWn5W0T0mtgwp413YF2O r

O06RmDbXzbPcA5NXTsMk6b7fL

AHzRYEPBdBt1x3XJAZAPkrBPN

7dx2W w+g=

1b8fe79t5m6vkn6eo6s0n3gb7

mls aicq.org. 86400 IN TY

PE50 \#38 0101000104D399E

AAB140ADEA6FED9985FAABFED

FA1D4E4B147C5D83 D2C90006

400000000002

1b8fe79t5m6vkn6eo6s0n3gb7

mlsaicq.org. 86400 IN RRS

IG TYPE50 7 2 86400 20090

70115442820090617144428 3

7493 org. Yv5+u5gugBuwP7V

r2PE5/LdLIbi5GuWr8j9wl0pI

ExHBrYbL+BkD7Nv6 LhahOv7i

nS1yhgmLJC8ySj5gMghnZXxzP

v6WvQlcjUj1nukPtU+tqUXE s

KwAdzgizMu14qM36UMMhl8P3U

W4YzAJdoplJk9Ml3Oo7bYMdS3

P5gC3 FOw=

These .org signatures

are 1024-bit RSA signatures.

2003: Shamir–Tromer et al.

concluded that 1024-bit RSA

was already breakable by

large companies and botnets.

$10 million: 1 key/year.

$120 million: 1 key/month.

2003: RSA Laboratories

recommended a transition to

2048-bit keys “over the remainder

of this decade.” 2007: NIST

made the same recommendation.

Will be a few years before

1024-bit RSA is breakable

by academics in small labs.

They’re finishing RSA-768 now.

Will be a few years before

1024-bit RSA is breakable

by academics in small labs.

They’re finishing RSA-768 now.

“RSA-1024: still secure

against honest attackers.”

Will be a few years before

1024-bit RSA is breakable

by academics in small labs.

They’re finishing RSA-768 now.

“RSA-1024: still secure

against honest attackers.”

What about serious attackers

using many more computers?

e.g. botnet operators?

I say:

Using RSA-1024 is irresponsible.

But that’s not the

biggest problem with

the DNSSEC signatures in .org.

But that’s not the

biggest problem with

the DNSSEC signatures in .org.

Suppose an attacker forges

a DNS packet from .org,

including exactly the same

DNSSEC signatures but

changing the NS+A records to

point to the attacker’s servers.

But that’s not the

biggest problem with

the DNSSEC signatures in .org.

Suppose an attacker forges

a DNS packet from .org,

including exactly the same

DNSSEC signatures but

changing the NS+A records to

point to the attacker’s servers.

Fact: DNSSEC “verification”

won’t notice the change.

The signatures say nothing

about the NS+A records.

The forgery will be accepted.

What did .org sign?

The signature for mwisc.org

says “.org might have

data with hashes between

1b39ggevfp3b72r9r901o1osqddn4ben

and

1bfadvmpj1fqlfvdv8eksiokfheo7km9

but has not signed any of it.”

mwisc.org has a hash

in that range.

.org now has thousands

of these useless signatures.

This is .org “implementing”

a “needed security measure.”

The Internet has about

78000000 *.com names.

The Internet has about

78000000 *.com names.

Surveys by DNSSEC developers,

last updated 2009.06.24,

have found 241 *.com

names with DNSSEC signatures.

116 on 2008.08.20; 241 > 116.

The Internet has about

78000000 *.com names.

Surveys by DNSSEC developers,

last updated 2009.06.24,

have found 241 *.com

names with DNSSEC signatures.

116 on 2008.08.20; 241 > 116.

“DNSSEC:

Fifteen years of development.

Millions of dollars of

U.S. government grants

(DISA, NSF, DHS, etc.).

Hundreds of users.”

What went wrong?

Some of the Internet’s DNS

servers are extremely busy: e.g.,

the root servers, the .com servers,

the google.com servers.

Can they afford crypto? Hmmm.

DNSSEC tries to minimize

server-side costs by precomputing

signatures of DNS records.

“No per-query crypto.”

Signature is computed once;

saved; sent to many clients.

Hopefully the server can afford

to sign each DNS record once.

Clients don’t share the work

of verifying a signature.

DNSSEC tries to reduce

client-side costs through

choice of crypto primitive.

Many DNSSEC crypto options:

640-bit RSA, original specs;

768-bit RSA, many docs;

1024-bit RSA, current RFCs

(for “leaf nodes in the DNS”);

DSA, “10 to 40 times as slow

for verification” but faster for

signatures.

DNSSEC made breakable choices

such as 640-bit RSA

for no reason other than

fear of server overload.

DNSSEC needed more options

to survive the inevitable breaks.

Profusion of options made

DNSSEC crypto complicated,

hard to review for bugs.

2009: Emergency BIND upgrade.

Minor software bug meant

that DNSSEC DSA signatures

had always been trivial to forge.

My main point today:

DNSSEC’s fear of overload

forced DNSSEC down a path

of unreliability, insecurity, and

unusability. This is why

DNSSEC has been a failure.

My main point today:

DNSSEC’s fear of overload

forced DNSSEC down a path

of unreliability, insecurity, and

unusability. This is why

DNSSEC has been a failure.

My main point Saturday:

Per-query crypto leads to a

much simpler protocol with

much higher reliability,

much higher security,

and much higher usability.

My main point today:

DNSSEC’s fear of overload

forced DNSSEC down a path

of unreliability, insecurity, and

unusability. This is why

DNSSEC has been a failure.

My main point Saturday:

Per-query crypto leads to a

much simpler protocol with

much higher reliability,

much higher security,

and much higher usability.

Can still handle the loads

using state-of-the-art crypto.

DNS architecture

Browser pulls data from

DNS cache at fsf.org:

Browser at fsf.org

DNS cache

WV UT
PQ RS

OO

Administrator at redhat.com?> =<89 :;

OO

“The web server

www.redhat.com

has IP address

96.6.144.112.”

ck

Cache pulls data from

administrator if it

doesn’t already have the data.

Administrator pushes data

through local database into

.redhat.com DNS server:

Browser at fsf.org

DNS cache

WV UT
PQ RS

OO

.redhat.com
DNS server

OO

.redhat.com
database

OO

Administrator at redhat.com

WV UT

PQ RS
OO

“The web server

www.redhat.com

has IP address

96.6.144.112.”

_g

DNS cache learns location of

.redhat.com DNS server from

.com DNS server:

at fsf.org DNS cache
'& %$! "#

.com
DNS server

OO

.com
database

WV UT
PQ RS

OO

at redhat.com Administrator
'& %$! "#

OO

“The DNS server

for .redhat.com

is ns2

with IP address

209.132.183.2.”

4<

GodWV UT

PQ RS

&&NNNNNNNNNNN Browser

Root
DNS
server

// DNS
cache

WV UT
PQ RS

OO

.com
DNS
server

::
uuuuuuuuuuu .redhat.com

DNS
server

OO

.com
data

at Internet
Central HQ

base

OO

.redhat.com
database

OO

at redhat.com

Administrator

WV UT

PQ RS
OOhhPPPPPPPP

\d

6>

DNS server software listed in

Wikipedia: BIND, Microsoft

DNS, djbdns, Dnsmasq, Simple

DNS Plus, NSD, PowerDNS,

MaraDNS, ANS, Posadis,

Secure64 DNS.

DNS database-management

tools listed by 2008 Salomon:

BPP, DNS Boss, DNStool,

gencidrzone, h2n, makezones,

NSC, nsupdate, SENDS,

updatehosts, Utah Tools,

webdns, zsu. Plus hundreds of

homegrown tools written by

DNS registrars etc.

DNSSEC changes everything

DNSSEC requires new code in

every DNS-management tool.

Whenever a tool adds or changes

a DNS record, also has to

precompute and store a DNSSEC

signature for the new record.

Often considerable effort

for the tool programmers.

Example: Signing 2GB database

can produce 10GB database

(2005 NIST study).

Tool reading database into RAM

probably has to be reengineered.

Administrator also has to send

public key to .com.

The .com server

and database software

and web interface

need to be updated

to accept these public keys

and to sign everything.

DNS cache needs new software

to fetch keys, fetch signatures,

and verify signatures.

Tons of pain for implementors.

Still many gaping holes

after fifteen years of work.

Example: .org has no way

to receive DNSSEC public keys

from *.org users

(via, e.g., joker.com).

Example: .org software

can’t manage signatures

for millions of .org records.

Much too slow, much too big.

Replay attacks

Attacker inspects DNSSEC

signatures from redhat.com.

redhat.com changes location,

acquires new IP addresses,

changes DNS records.

Replay attacks

Attacker inspects DNSSEC

signatures from redhat.com.

redhat.com changes location,

acquires new IP addresses,

changes DNS records.

Attacker buys the old addresses,

forges DNS responses

with the old DNS records

and the old signatures.

Passes signature verification.

Successfully steals mail!

DNSSEC has a partial defense.

Signature has an expiration date,

normally signing date + 30 days.

Not very good security:

replay attack continues to work

for up to 30 days.

DNSSEC has a partial defense.

Signature has an expiration date,

normally signing date + 30 days.

Not very good security:

replay attack continues to work

for up to 30 days.

Plus extra code: re-sign

before old signatures expire.

Any mistakes destroy your domain

(“DNSSEC suicide”). 2009:

This happened to all ISC DLV

DNSSEC users. UCLA admin:

“The solution in all cases was to

disable DNSSEC validation.”

Another type of replay:

www.redhat.com is actually

published by Akamai.

Client in Brazil asks for

www.redhat.com.

Akamai responds with

IP address in Sao Paulo.

Attacker replays same response

to user in Berlin.

User expected fast, reliable

connection to a nearby server;

receives slow, unreliable

connection across the ocean.

Expiration dates don’t help.

Query espionage

RFC 4033: “Due to a deliberate

design choice, DNSSEC does not

provide confidentiality.”

Query espionage

RFC 4033: “Due to a deliberate

design choice, DNSSEC does not

provide confidentiality.”

http://dnscurve.org

/espionage.html has a simple

dnsoutloud script combining

tcpdump, text2wave, and play.

Query espionage

RFC 4033: “Due to a deliberate

design choice, DNSSEC does not

provide confidentiality.”

http://dnscurve.org

/espionage.html has a simple

dnsoutloud script combining

tcpdump, text2wave, and play.

Would any DNSSEC proponent

like to run dnsoutloud

in a busy Internet cafe

with the volume turned up?

Database espionage

Privacy-violating speed:

� 229 noisy guesses/day:

DNS today.

> 240 silent guesses/day,

many more with large botnet:

Current DNSSEC (NSEC3).

Instantaneous: Old DNSSEC,

or DNS with public AXFR.

DDoS amplification

dig +bufsize=4096 +dnssec

any se @a.ns.se

To Sweden: 31-byte UDP packet.

From Sweden:

3974-byte UDP packet.

dig +bufsize=4096 +dnssec

any br @a.dns.br

To Brazil: 31-byte UDP packet.

From Brazil:

1621-byte UDP packet.

This is crazy!

Imagine an “HTTPSEC”

that works like DNSSEC.

This is crazy!

Imagine an “HTTPSEC”

that works like DNSSEC.

Store a signature next to

every web page.

Recompute and store signature

for every minor wiki edit,

and again every 30 days.

Any failure: HTTPSEC suicide.

Dynamic content? Give up.

This is crazy!

Imagine an “HTTPSEC”

that works like DNSSEC.

Store a signature next to

every web page.

Recompute and store signature

for every minor wiki edit,

and again every 30 days.

Any failure: HTTPSEC suicide.

Dynamic content? Give up.

Replay attacks work for 30 days.

Filename guessing is much faster.

Nothing is encrypted.

Denial of service is trivial.

Security review

Confidentiality: Bad today.

With DNSSEC, even worse.

Security review

Confidentiality: Bad today.

With DNSSEC, even worse.

Integrity: Bad today.

With DNSSEC, better,

but (1) still not great

and (2) only after incredible

amounts of implementor pain.

Security review

Confidentiality: Bad today.

With DNSSEC, even worse.

Integrity: Bad today.

With DNSSEC, better,

but (1) still not great

and (2) only after incredible

amounts of implementor pain.

Availability: Bad today.

With DNSSEC, much worse.

