
The security impact

of a new cryptographic library

D. J. Bernstein, U. Illinois Chicago

Tanja Lange, T. U. Eindhoven

Joint work with:

Peter Schwabe, Academia Sinica

http://xkcd.com/538/

http://xkcd.com/538/

AES-128, RSA-2048, etc.

are widely accepted standards.

Obviously infeasible to break

by best attacks in literature.

Implementations are available

in public cryptographic libraries

such as OpenSSL.

Common security practice is

to use those implementations.

AES-128, RSA-2048, etc.

are widely accepted standards.

Obviously infeasible to break

by best attacks in literature.

Implementations are available

in public cryptographic libraries

such as OpenSSL.

Common security practice is

to use those implementations.

But cryptography is still

a disaster! Complete failures

of confidentiality and integrity.

We have designed+implemented

a new cryptographic library,

NaCl (“salt”), to address

the underlying problems.

nacl.cace-project.eu,

nacl.cr.yp.to: source

and extensive documentation.

Acknowledgments:

code contributions from

Matthew Dempsky (Mochi

Media), Niels Duif (Eindhoven),

Emilia Käsper (Leuven),

Adam Langley (Google),

Bo-Yin Yang (Academia Sinica).

http://nacl.cace-project.eu
http://nacl.cr.yp.to

Most of the Internet

is cryptographically unprotected.

Primary goal of NaCl: Fix this.

Main task: public-key

authenticated encryption.

Alice has a message m for Bob.

Uses Bob’s public key and

Alice’s secret key to compute

authenticated ciphertext c.

Sends c to Bob.

Bob uses Alice’s public key

and Bob’s secret key

to verify and recover m.

Alice using a

typical cryptographic library:

Generate random AES key.

Use AES key to encrypt packet.

Hash encrypted packet.

Read RSA key from wire format.

Use key to sign hash.

Read Bob’s key from wire format.

Use key to encrypt signature etc.

Convert to wire format.

Plus more code:

allocate storage,

handle errors, etc.

Alice using NaCl:

c = crypto_box(m,n,pk,sk)

Alice using NaCl:

c = crypto_box(m,n,pk,sk)

32-byte secret key sk.

32-byte public key pk.

24-byte nonce n.

c is 16 bytes longer than m.

All objects are C++

std::string variables

represented in wire format,

ready for storage/transmission.

C NaCl: similar, using pointers;

no memory allocation, no failures.

Bob verifying, decrypting:

m=crypto_box_open(c,n,pk,sk)

Initial key generation:

pk = crypto_box_keypair(&sk)

Bob verifying, decrypting:

m=crypto_box_open(c,n,pk,sk)

Initial key generation:

pk = crypto_box_keypair(&sk)

Can instead use signatures

for public messages:

pk = crypto_sign_keypair(&sk)

64-byte secret key,

32-byte public key.

sm = crypto_sign(m,sk)

64 bytes overhead.

m = crypto_sign_open(sm,pk)

“This sounds too simple!

Don’t applications need more?”

“This sounds too simple!

Don’t applications need more?”

Examples of applications

using NaCl’s crypto_box:

DNSCurve and DNSCrypt,

high-security authenticated

encryption for DNS queries;

deployed by OpenDNS.

QuickTun, VPN from Ivo Smits.

Ethos, OS from Jon Solworth.

Prototype implementation

of CurveCP: high-security

cryptographic version of TCP.

No secret load addresses

2005 Osvik–Shamir–Tromer:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms to compute influence�1.

Most cryptographic libraries

still use secret load addresses

but add “countermeasures”

intended to obscure influence

upon the CPU cache state.

Not confidence-inspiring;

likely to be breakable.

Most cryptographic libraries

still use secret load addresses

but add “countermeasures”

intended to obscure influence

upon the CPU cache state.

Not confidence-inspiring;

likely to be breakable.

NaCl systematically avoids

all loads from addresses

that depend on secret data.

Eliminates this type of disaster.

2010 Langley ctgrind:

verify this automatically.

No secret branch conditions

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Most cryptographic software

has many more small-scale

variations in timing:

e.g., memcmp for IPsec MACs.

No secret branch conditions

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Most cryptographic software

has many more small-scale

variations in timing:

e.g., memcmp for IPsec MACs.

NaCl systematically avoids

all branch conditions

that depend on secret data.

Eliminates this type of disaster.

No padding oracles

1998 Bleichenbacher:

Decrypt SSL RSA ciphertext

by observing server responses

to �106 variants of ciphertext.

SSL first inverts RSA,

then checks for “PKCS padding”

(which many forgeries have).

Subsequent processing applies

more serious integrity checks.

Server responses reveal

pattern of PKCS forgeries;

pattern reveals plaintext.

Typical defense strategy:

try to hide differences

between padding checks and

subsequent integrity checks.

Hard to get this right: see,

e.g., Crypto 2012 Bardou–

Focardi–Kawamoto–Steel–Tsay.

Typical defense strategy:

try to hide differences

between padding checks and

subsequent integrity checks.

Hard to get this right: see,

e.g., Crypto 2012 Bardou–

Focardi–Kawamoto–Steel–Tsay.

NaCl does not decrypt

unless message is authenticated.

Verification procedure rejects

all forgeries in constant time.

Attacks are further constrained

by per-nonce key separation

and standard nonce handling.

Centralizing randomness

2008 Bello: Debian/Ubuntu

OpenSSL keys for 1.5 years

had only 15 bits of entropy.

Debian developer had removed

a subtle line of OpenSSL

randomness-generating code.

Centralizing randomness

2008 Bello: Debian/Ubuntu

OpenSSL keys for 1.5 years

had only 15 bits of entropy.

Debian developer had removed

a subtle line of OpenSSL

randomness-generating code.

NaCl uses /dev/urandom,

the OS random-number generator.

Reviewing this kernel code

is much more tractable than

reviewing separate RNG code

in every security library.

Avoiding unnecessary randomness

2010 Bushing–Marcan–Segher–

Sven: Sony ignored ECDSA

requirement of new randomness

for each signature.) Signatures

leaked PS3 code-signing key.

Avoiding unnecessary randomness

2010 Bushing–Marcan–Segher–

Sven: Sony ignored ECDSA

requirement of new randomness

for each signature.) Signatures

leaked PS3 code-signing key.

NaCl has deterministic

crypto_box and crypto_sign.

Randomness only for keypair.

Eliminates this type of disaster.

Also simplifies testing. NaCl uses

automated test battery from

eBACS (ECRYPT Benchmarking

of Cryptographic Systems).

Avoiding pure crypto failures

2008 Stevens–Sotirov–

Appelbaum–Lenstra–Molnar–

Osvik–de Weger exploited

MD5) rogue CA cert.

Avoiding pure crypto failures

2008 Stevens–Sotirov–

Appelbaum–Lenstra–Molnar–

Osvik–de Weger exploited

MD5) rogue CA cert.

2012 Flame: new MD5 attack.

Avoiding pure crypto failures

2008 Stevens–Sotirov–

Appelbaum–Lenstra–Molnar–

Osvik–de Weger exploited

MD5) rogue CA cert.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years

after the introduction of MD5,

Preneel and Dobbertin were

calling for MD5 to be scrapped.

NaCl pays attention to

cryptanalysis and makes

very conservative choices

of cryptographic primitives.

Speed

Crypto performance problems

often lead users to reduce

cryptographic security levels

or give up on cryptography.

Example 1:

Google SSL uses RSA-1024.

Security note:

Analyses in 2003 concluded

that RSA-1024 was breakable;

e.g., 2003 Shamir–Tromer

estimated 1 year, �107 USD.

RSA Labs and NIST response:

Move to RSA-2048 by 2010.

Example 2: Tor uses RSA-1024.

Example 3: DNSSEC uses RSA-

1024: “tradeoff between the

risk of key compromise and

performance: : : ”

Example 4: OpenSSL continues

to use secret AES load addresses.

Example 5:

https://sourceforge.net/account

is protected by SSL but

https://sourceforge.net/develop

redirects browser to

http://sourceforge.net/develop,

turning off the cryptography.

https://sourceforge.net/account
https://sourceforge.net/develop
http://sourceforge.net/develop

NaCl has no low-security options.

e.g. crypto_box always

encrypts and authenticates.

e.g. no RSA-1024;

not even RSA-2048.

NaCl has no low-security options.

e.g. crypto_box always

encrypts and authenticates.

e.g. no RSA-1024;

not even RSA-2048.

Remaining risk:

Users find NaCl too slow)

switch to low-security libraries

or disable crypto entirely.

NaCl has no low-security options.

e.g. crypto_box always

encrypts and authenticates.

e.g. no RSA-1024;

not even RSA-2048.

Remaining risk:

Users find NaCl too slow)

switch to low-security libraries

or disable crypto entirely.

How NaCl avoids this risk:

NaCl is exceptionally fast.

Much faster than other libraries.

Keeps up with the network.

NaCl operations per second

for any common packet size,

using AMD Phenom II X6 1100T

CPU ($190 last year):

crypto_box: >80000.

crypto_box_open: >80000.

crypto_sign_open: >70000.

crypto_sign: >180000.

NaCl operations per second

for any common packet size,

using AMD Phenom II X6 1100T

CPU ($190 last year):

crypto_box: >80000.

crypto_box_open: >80000.

crypto_sign_open: >70000.

crypto_sign: >180000.

Handles arbitrary packet floods

up to �30 Mbps per CPU,

depending on protocol details.

But wait, it’s even faster!

1. Pure secret-key crypto

for any packet size:

80000 1500-byte packets/second

fill up a 1 Gbps link.

2. Pure secret-key crypto

for many packets

from same public key,

if application splits

crypto_box into

crypto_box_beforenm and

crypto_box_afternm.

3. Very fast rejection

of forged packets

under known public keys:

no time spent on decryption.

(This doesn’t help much

for forgeries under new keys,

but flooded server can

continue providing fast service

to known keys.)

4. Fast batch verification,

doubling speed of

crypto_sign_open

for valid signatures.

Cryptographic details

The main work we did:

achieve these speeds

without compromising security.

ECC, not RSA:

much stronger security record.

Curve25519, not NSA/NIST

curves: twist-security et al.

Salsa20, not AES:

much larger security margin.

Poly1305, not HMAC:

information-theoretic security.

EdDSA, not ECDSA:

collision-resilience et al.

Case study: EdDSA

1985 ElGamal signatures:

(R;S) is signature of M

if BH(M) � ARRS (mod q)

and R;S 2 f0; 1; : : : ; q � 2g.

Here q is standard prime,

B is standard base,

A is signer’s public key,

H(M) is hash of message.

Signer generates A and R

as secret powers of B;

easily solves for S.

1990 Schnorr improvements:

1. Hash R in the exponent:

BH(M) � AH(R)RS .

Reduces attacker control.

2. Replace three exponents

with two exponents:

BH(M)=H(R) � ARS=H(R).

Saves time in verification.

3. Simplify by relabeling S:

BH(M)=H(R) � ARS .

Saves time in verification.

4. Merge the hashes:

BH(R;M) � ARS .

) Resilient to H collisions.

5. Eliminate inversions for signer:

BS � RAH(R;M).

Simpler, faster.

6. Compress R to H(R;M).

Saves space in signatures.

7. Use half-size H output.

Saves space in signatures.

5. Eliminate inversions for signer:

BS � RAH(R;M).

Simpler, faster.

6. Compress R to H(R;M).

Saves space in signatures.

7. Use half-size H output.

Saves space in signatures.

Subsequent research: extensive

theoretical study of security of

Schnorr’s system.

5. Eliminate inversions for signer:

BS � RAH(R;M).

Simpler, faster.

6. Compress R to H(R;M).

Saves space in signatures.

7. Use half-size H output.

Saves space in signatures.

Subsequent research: extensive

theoretical study of security of

Schnorr’s system.

But patented.) DSA, ECDSA

avoided most improvements.

5. Eliminate inversions for signer:

BS � RAH(R;M).

Simpler, faster.

6. Compress R to H(R;M).

Saves space in signatures.

7. Use half-size H output.

Saves space in signatures.

Subsequent research: extensive

theoretical study of security of

Schnorr’s system.

But patented.) DSA, ECDSA

avoided most improvements.

Patent expired in 2008.

EdDSA (CHES 2011 Bernstein–

Duif–Lange–Schwabe–Yang):

Use elliptic curves in “complete

�1-twisted Edwards” form.

) very high speed,

natural side-channel protection,

no exceptional cases.

Skip signature compression.

Support batch verification.

Use double-size H output,

and include A as input.

Generate R deterministically

as a secret hash of M.

) Avoid PlayStation disaster.

Advertisement: NEON crypto

(CHES 2012, to appear)

On 1GHz Cortex A8 core

(iPad 1, iPhone 4, etc.):

5.60 cycles/byte (1.4 Gbps),

2.30 cycles/byte (3.4 Gbps)

for Salsa20, Poly1305.

527102 cycles (1897/second),

624846 cycles (1600/second),

244655 cycles (4087/second)

for Curve25519 public-key

operations: DH, verify, sign.

On 1.782GHz Qualcomm

Scorpion (S3) core:

5.42 cycles/byte (2.6 Gbps),

1.89 cycles/byte (7.5 Gbps)

for Salsa20, Poly1305.

457371 cycles (3896/second),

587896 cycles (3031/second),

269656 cycles (6608/second)

for same public-key operations.

On 1.782GHz Qualcomm

Scorpion (S3) core:

5.42 cycles/byte (2.6 Gbps),

1.89 cycles/byte (7.5 Gbps)

for Salsa20, Poly1305.

457371 cycles (3896/second),

587896 cycles (3031/second),

269656 cycles (6608/second)

for same public-key operations.

We don’t have any useful

Snapdragon documentation, so

we can’t really optimize; and we

don’t have any Krait (S4) devices.

